Impressionante VIDEO sur Mars Exploration Rover (réalisé par la Nasa) - Partie 1

 

Impressionante VIDEO sur Mars Exploration Rover (réalisé par la Nasa) - Partie 1

 

Mars Exploration Rover (MER)

"MER" (Mars Exploration Rover) est une Mission Spatiale qui a pour but d'explorer la Planète Mars à la recherche éventuelle d’une présence ancienne et prolongée d’eau, qui aurait permis l’apparition de traces de vie, grâce à deux sondes automatiques lancées depuis Cap Canaveral par une Fusée Delta II:
- MER-A, le Robot Spirit lancé le 10 juin 2003, s’est posé le 3 janvier 2004 dans le cratère Gusev, une dépression de 170 km de diamètre qui a peut-être accueilli un lac.
- MER-B, le robot Opportunity lancé le 8 juillet 2003, s’est posé quand à lui le 24 janvier 2004 sur Meridiani Planum.

* Site Officiel de la NASA (Mars Rover):
http://marsrover.nasa.gov/home/

* Autre Site:
http://fr.wikipedia.org/wiki/Mission_Mars_Exploration_Rover

 


Mars Exploration Rover (MER)
envoyé par Seven70
 
 
Mars Exploration Rover

Un article de Wikipédia, l'encyclopédie libre.

Illustration artistique du robot
Illustration artistique du robot

Mars Exploration Rover (MER) est une mission spatiale initiée par les États-Unis et confiée à la NASA sur la planète Mars.

Elle a pour but une exploration géologique de la planète Mars à la recherche d’une présence ancienne et prolongée d’eau, qui aurait permis l’apparition de traces de vie, grâce à deux sondes automatiques lancées depuis Cap Canaveral par une fusée Delta II :

Cet article utilise trois conventions de langage :

  • Le terme de rover, consacré par l’usage, est employé à la place du mot astromobile.
  • Les agents de la NASA ont adopté par convention le genre féminin pour les rovers Spirit et Opportunity.
  • La durée des missions des rovers est exprimée en nombre de « sols », qui représentent le nombre de jours martiens écoulés depuis l’arrivée de chaque robot sur Mars. Un sol correspond à 24h 39min.

Sommaire

[masquer]

Communication publique de la NASA sur la mission Mars Exploration Rover [modifier]

Origine des noms des rovers [modifier]

La façon de procéder au choix des noms des rovers montre une tentative de la NASA pour attirer l’attention du public américain sur l’exploration spatiale en la rattachant aux mythes fondateurs des USA, et en essayant de cibler en particulier la jeunesse.

Les noms de Spirit et Opportunity ont été retenus à l’issue d’un concours organisé par la société Lego avec la collaboration de la Planetary Society à la demande de la NASA. La lauréate fut une petite fille de 9 ans, Sofi Collis, née en Sibérie, et adoptée par une famille américaine vivant en Arizona. Elle rédigea le poème suivant :

I used to live in an Orphanage.
It was dark and cold and lonely.
At night, I looked up at the sparkly sky and felt better.
I dreamed I could fly there.
In America, I can make all my dreams come true…
Thank-you for the « Spirit » and the « Opportunity »

Ces noms ont été adoptés en référence à la légende de la Conquête de l’Ouest, désignée comme the land of opportunity pour les colons dotés du pioneering spirit.

Opération « Envoyez votre nom sur Mars » [modifier]

DVD de l'opération « Send Your Name to Mars » au centre de l'image, sur la plate-forme d'atterrissage.
DVD de l'opération « Send Your Name to Mars » au centre de l'image, sur la plate-forme d'atterrissage.

L'opération « Send Your Name to Mars » a permis à la NASA de collecter 4 millions de noms qui ont été inscrits sur un DVD fixé avec 3 briques Lego à la surface de chacune des plates-formes d'atterrissage des rovers.

Le DVD montre en son centre un personnage (Astrobot), toujours de la société Lego, destiné à inciter les plus jeunes à suivre le déroulement de la mission par l’intermédiaire d’un journal sur le web.

Le bord du DVD affiche également un message codé dont le déchiffrage est proposé au public.

Ces disques numériques ont été fabriqués en verre. La NASA a retenu comme fournisseur la société Plasmon OMS, une PME de Normandie.

Ce DVD porte aussi des aimants destinés à collecter de la poussière martienne en vue d’études spectroscopiques.

Astéroïdes baptisés des noms des rovers [modifier]

En hommage aux rovers explorant la planète Mars, les noms de Spirit et Opportunity ont été attribués respectivement à l’astéroïde 37452 et à l’astéroïde 39382. Ceux-ci ont été découverts le 24 septembre 1960 par Ingrid van Houten-Groeneveld, Cees J. van Houten, et Tom Gehrels, avec les télescopes de l’observatoire du Mont Palomar du Caltech.

L’astéroïde (37452) Spirit a un diamètre de 4 à 9 kilomètres, et l’astéroïde (39382) Opportunity a un diamètre de 3 à 7 kilomètres. Ingrid van Houten-Groeneveld, qui vit aux Pays-Bas, a proposé ces noms récemment après que ces astéroïdes se furent vus assignés un matricule officiel en 2002.

Les deux astéroïdes accomplissent leurs orbites en 7,9 ans autour du soleil entre Mars et Jupiter. Ni l’un, ni l’autre ne suivent un chemin qui croise l’orbite d’autres planètes. Ils appartiennent à un petit groupe d’astéroïdes connus sous le nom de groupe de Hilda, qui ont une résonance d’orbitale de 3:2 avec Jupiter. Ceci signifie que chaque fois que Jupiter accomplit deux orbites autour du soleil, les astéroïdes en accomplissent trois.

Autres opérations de communication [modifier]

D’autres actions de communication ont été réalisées par la NASA, comme un concours de dessins sur le thème de l’exploration de Mars, ou l’utilisation de personnages de dessins animés pour symboliser les rovers. Mais l’opération la plus significative est un énorme effort de mise à disposition d’informations sur Internet, notamment en diffusant des images brutes filmées par les caméras des rovers.

Équipements et structure [modifier]

Structure de l’engin spatial [modifier]

Structure de l’engin spatial MER : étage de navigation, bouclier de protection supérieur (coque arrière), rover et module d’atterrissage, bouclier de protection thermique.
Structure de l’engin spatial MER : étage de navigation, bouclier de protection supérieur (coque arrière), rover et module d’atterrissage, bouclier de protection thermique.

Chacun des engins spatiaux jumeaux qui composent la mission MER comporte :

  • un étage de croisière de 2,25 m de diamètre, équipé de panneaux solaires de 4,4 m², de deux antennes de faible et moyen gain pour communiquer avec la Terre, de moteurs de correction de trajectoire à l’hydrazine, de deux senseurs solaire et stellaire pour la navigation.
  • un bouclier de protection arrière avec des rétrofusées et un parachute.
  • un ensemble composé par le rover, le module d’atterrissage tétraédrique, et les airbags.
  • un bouclier de protection thermique.

L’ensemble de l’engin spatial est stabilisé grâce à une rotation de deux tours par minute.

Les composants de chacun des engins spatiaux ont le poids suivant :

  • Rover - 174 kg,
  • Module d’atterrissage - 348 kg,
  • Bouclier de protection arrière et parachute - 209 kg,
  • Bouclier de protection thermique - 78 kg,
  • Étage de croisière - 193 kg,
  • Carburant - 50 kg.

Le poids total est de 1 063 kg.

Structure des rovers [modifier]

Vue globale d’un rover MER sur Mars.
Vue globale d’un rover MER sur Mars.

Jumeaux, les deux rovers ont une hauteur de 1,5 m, une largeur de 2,3 m, une longueur de 1,6 m et un poids de 185 kg. Chaque rover comporte :

  • une cellule centrale triangulaire, qui abrite l’ordinateur de bord et ses batteries, et les maintient à une température contrôlée (entre -40° et +40°),
  • 6 roues équipées chacune d’un moteur individuel, et d’un moteur de direction pour les 4 roues de devant et de derrière, ce qui permet au rover de faire des tours de 360° sur lui-même.
  • un système de mobilité pour circuler sur terrain rocheux, reliant les roues à la cellule centrale,
  • des panneaux solaires pouvant fournir jusqu’à 140 watts d’énergie électrique, capables de se dresser à la verticale pour tenter de faire glisser la poussière martienne accumulée,
  • 2 batteries rechargeables,
Vue du bras robotisé porteur d’instruments d’observation scientifique d’un rover sur Mars.
Vue du bras robotisé porteur d’instruments d’observation scientifique d’un rover sur Mars.
  • un bras robotisé (IDD) porteur de l’outil d’abrasion des roches (RAT), de 2 spectromètres (Mössbauer et APXR) et d’une caméra microscope.
  • 3 antennes radios, à grand gain, à faible gain et UHF,
  • un ordinateur (voir ci-après),
  • un système de contrôle et de maintien de la température des organes internes : thermomètres, thermostats, radiateurs, système d’évacuation de la chaleur, peinture dorée, isolant (aérogel). La température doit être suffisamment élevée et constante pour garantir le bon fonctionnement des circuits électriques et des batteries. Ces derniers ont donc été placés dans une boîte isolée (Warm Electronics Box ou WEB), qui est réchauffée par huit cellules chauffantes (Radio-isotope Heater Units ou RHU). La chaleur est produite dans chaque cellule par 2,7 grammes de dioxyde de plutonium.
  • un mât portant des instruments de navigation et scientifiques : une caméra panoramique, deux caméras de navigation, et un spectromètre thermique.
  • 6 caméras de navigation et 3 caméras scientifiques (voir ci-dessous).

Équipements de communication d’un rover [modifier]

Vue sur les antennes haut gain (high gain), faible gain (low gain) et UHF d’un rover MER sur Mars
Vue sur les antennes haut gain (high gain), faible gain (low gain) et UHF d’un rover MER sur Mars

La mission Mars Pathfinder employait un petit robot, Sojourner, qui restait dépendant de son module d’atterrissage, car celui-ci était le support des équipements de communication avec la terre.

Dans la mission MER, au contraire, les rovers sont indépendants de l’atterrisseur qui est abandonné lorsque le robot se met en route. En effet, chaque rover est équipé avec 3 antennes pour communiquer avec la Terre :

  • une antenne grand gain (HGA), parabolique, portant à son verso un mémorial (voir ci-dessous), et qui permet de communiquer directement avec la Terre dans la bande X. Cette antenne est pilotable pour l’orienter vers la Terre. Son débit est de 11 Kbit/s pendant 3 heures par jour au maximum.
  • une antenne faible gain omnidirectionnelle (LGA), pour communiquer directement avec la Terre, à un faible débit de 7 à 10 bits/s dans la bande X.
  • une antenne UHF omnidirectionnelle, pour communiquer avec les orbiteurs américains Mars Global Surveyor et Mars Odyssey, et avec l’orbiteur européen Mars Express, s’ils sont à la verticale du robot. Son débit est de 128 Kbit/s, pendant une ou deux sessions de quelques minutes par jour.

Caméras de navigation et d’observation scientifique [modifier]

Angles de vue des caméras : caméra panoramique (Pancam), caméra de navigation à grand angle (Navcam), caméra de détection d’obstacle avant (Front Hazcam) et arrière (Rear Hazcam).
Angles de vue des caméras : caméra panoramique (Pancam), caméra de navigation à grand angle (Navcam), caméra de détection d’obstacle avant (Front Hazcam) et arrière (Rear Hazcam).

Les rovers comportent 9 caméras destinées d’une part à la navigation et d’autre part aux études scientifiques :

  • 2 paires de caméras monochromes, permettant d’obtenir des images en relief, destinées à détecter les obstacles sur le parcours de l’appareil :
    • une paire située à l’avant du rover (Front Hazcam), qui sert également à observer le bras robotisé,
    • une paire à l’arrière du rover (Rear Hazcam).
Caméras panoramique et de navigation, et spectromètre Mini-TES des rovers de la mission MER sur Mars.
Caméras panoramique et de navigation, et spectromètre Mini-TES des rovers de la mission MER sur Mars.
  • une paire de caméras panoramiques (PanCam) de haute résolution, fixées au sommet du mat vertical porteur d’instruments. Chacun de ces instruments est équipé d’un capteur CDD de 1024 pixels sur 1024 pixels. Ce dispositif permet de faire des images en relief, et de repérer les roches et les sols intéressants pour une analyse ultérieure par les autres appareils de mesure. La PanCam est équipée de :
    • 8 filtres montés sur une roue permettant des captures d’images à des longueurs d’onde de 0,4 à 1,1 micromètres.
    • 2 filtres solaires pour mesurer l’absorption des rayons solaires par les poussières dans l’atmosphère de Mars.
    • des filtres permettant la vision infrarouge pour l'œil droit de la Pancam.
    • des filtres dans la lumière visible pour l'œil gauche de la caméra.
  • une paire de caméras grand angle (Navigation Camera ou NavCam), de faible résolution, destinées à la navigation,
  • une caméra microscope (Microscopic Imager), placée sur le bras robotisé, permettant d’obtenir des gros plans d’une résolution de 20 à 40 micromètres par pixel. Pour la mise au point, la distance entre le microscope et la surface photographiée est mesurée à l’aide d’une petite tige métallique.

Spectromètres et autres instruments d’observation [modifier]

Spectromètre APXS des rovers de la mission MER sur Mars.
Spectromètre APXS des rovers de la mission MER sur Mars.

Chaque robot transporte également 3 spectromètres :

  • un spectromètre infrarouge miniature d’émission thermique (Mini-TES), pour étudier la composition minéralogiques des roches et des sols, en mesurant le rayonnement naturel infrarouge émis par ces objets. Cet appareil est fixé sur le mât de chaque rover, à côté de la caméra panoramique.
  • un spectromètre Alpha Particle Rayons X (APXS), développé par l’Institut Max-Planck de chimie de Mayence en Allemagne, employé pour des analyses rapprochées de l’abondance des éléments constitutifs des roches et du sol. Les sources radioactives de Curium 244 de cet appareil bombardent de particules alpha et de rayons X le substrat à étudier. Ensuite, il analyse soit les rayons X émis par les éléments les plus lourds, soit les particules alpha réfléchies par les éléments les plus légers (carbone, oxygène, azote mais pas hydrogène et hélium). Cet instrument est fixé au bout du bras robotisé.[1]
  • un spectromètre Mössbauer MIMOS II, élaboré par le Dr Göstar Klingelhöfer de l’université Johannes Gutenberg de Mayence, en Allemagne, employé pour l’examen rapproché de la minéralogie des roches et des sols. Cet appareil utilise un rayon gamma pour mesurer la présence de minéraux riches en fer et leur état d’oxydation. Il est placé au bout du bras robotisé.[2]
Vue en gros plan d’une zone abrasée du rocher Mazatzal par l’outil RAT du robot Spirit.
Vue en gros plan d’une zone abrasée du rocher Mazatzal par l’outil RAT du robot Spirit.
  • un outil d’abrasion des roches (RAT), qui permet d’enlever la poussière et la surface des roches à étudier sur un diamètre de 4,5 cm, et une profondeur de 5 mm, grâce à une meule constituée d’éclats de diamants fixés sur une résine solide. Cet instrument permet d’étudier les roches en évitant les biais liés à la poussière ou à une altération de surface. Il est disposé au bout du bras robotisé. L’image ci-contre montre une vue en gros plan prise par la caméra microscope du robot Spirit, d’une zone abrasée par l’outil RAT du rocher Mazatzal, le jour Sol 82 de la mission MER A sur Mars.
  • 7 aimants destinés à piéger les particules magnétiques, et à les étudier à l’aide de la caméra panoramique, de la caméra microscope, et des spectromètres Mössbauer et APXS. Le dispositif de capture magnétique est constitué d’un cylindre central et de trois anneaux, ayant chacun une orientation magnétique alternée. L’ensemble constitue un cylindre de 4,5 cm de diamètre. Les poussières s’accumulent au fil du temps, au fil des captures des particules en suspension dans l’air martien, qui est très riche en poussières. Comme les différents aimants ont des puissances différentes, les plus faibles ne capturent que les particules plus magnétiques, alors que les plus forts les capturent presque tous. En revanche, il ne sera pas possible de savoir quelle est l’origine précise d’un ensemble donné de poussières.

Équipement informatique et système d’exploitation [modifier]

L’équipement informatique des deux rovers est le suivant :

  • Microprocesseur : un RAD6000, qui est un processeur RISC 32 bits construit par la firme Lorad, en fait une adaptation durcie à l’égard des radiations des PowerPC utilisés entre autres dans les Macintosh de la société Apple depuis 1994. Sa vitesse est de 20 millions d’instructions par seconde.
  • Mémoire : 128 Mo de DRAM, 256 Mo de mémoire flash et 3 Mo de EEPROM (mémoire non volatile).

Un voyage de sept mois [modifier]

Lancement [modifier]

Lancement du rover Spirit vers Mars le 10 juin 2003 par une fusée Delta II.
Lancement du rover Spirit vers Mars le 10 juin 2003 par une fusée Delta II.

La fusée Delta II de la firme Boeing a été sélectionnée par la NASA pour effectuer le lancement des deux engins spatiaux MER en raison de sa fiabilité et de sa puissance, en rapport avec la masse à propulser. Cette famille de lanceurs a été mise en service plus de 10 ans avant ce lancement, et elle a été employée pour plus de 90 projets.

Elle a déjà été utilisée pour lancer les 5 précédentes missions de la NASA vers Mars :

La mission Spirit a utilisé une fusée Delta II 7925 standard, qui a décollé le 10 juin 2003 à 17 h 58 min 47 s UTC. Par contre, la mission Opportunity, qui a été lancée plus tardivement le 7 juillet 2003 à 03 h 18 min 15 s UTC, a nécessité plus d’énergie pour atteindre Mars. Elle a donc été lancée par une fusée Delta II 7925 H, où « H » signifie « Heavy » (lourde).

Le 1er lancement avec la fusée Delta II 7925 a eu lieu dans le complexe spatial 17A (SLC-17A) de la station Cap Canaveral de l’Air Force Station en Floride. Le 2e lancement avec la fusée Delta II 7925H a été effectué depuis le même site depuis le pas de tir SLC-17B.

Au décollage, la fusée Delta II pèse au total 285 228 kg, dont seulement 1 070 kg pour l’engin spatial.

Fusée Delta II employée pour le lancement vers Mars des rovers Spirit et Opportunity. Le schéma montre les moteurs fusées à carburant solide, les étages I, II et III, la coiffe et la sonde spatiale MER (cercle, grossi 4 X).
Fusée Delta II employée pour le lancement vers Mars des rovers Spirit et Opportunity. Le schéma montre les moteurs fusées à carburant solide, les étages I, II et III, la coiffe et la sonde spatiale MER (cercle, grossi 4 X).

Les principaux éléments constituant la fusée Delta II sont les suivants :

  • Des fusées d’appoint à carburant solide sont employées pour augmenter la puissance de la fusée : 9 au total, dont 6 déclenchées au décollage, et 3 fonctionnant une minute pendant le vol.
  • L’étage I est alimenté avec du kérosène et de l’oxygène liquide. Il comporte un moteur Rocketdyne RS-27A, qui développe une poussée de 890 000 Newtons.
  • L’étage II utilise un moteur Aerojet AJ10-118K, qui brûle une combinaison d’Aérozine 50 (un carburant fait de 50 % d’hydrazine et 50 % de diméthyl-hydrazine asymétrique) et de tétroxyde d’azote (comburant à base de N2O4). L’étage II s’allume à deux reprises : dans la phase finale de la mise sur orbite terrestre, puis pour aligner le reste du lanceur et le vaisseau spatial vers Mars, avec la bonne vitesse et le bon angle de lancement.
  • L’étage III comporte un moteur fusée solide, qui fonctionne pendant 90 s pour injecter l’engin spatial sur sa trajectoire vers Mars.
  • La coiffe abrite les étages II et III, ainsi que l’engin spatial MER. Il les protège des forces aérodynamiques durant la traversée de l’atmosphère terrestre. La coiffe est larguée à une altitude de 130 km, à la fin de la combustion de l’étage II.
Lancement du rover Spirit vers Mars par un lanceur Delta II. Une fusée d’appoint à carburant solide vient de se décrocher du 1er étage, à la suite de deux autres.
Lancement du rover Spirit vers Mars par un lanceur Delta II. Une fusée d’appoint à carburant solide vient de se décrocher du 1er étage, à la suite de deux autres.

À la suite du décollage, les principales phases du vol sont les suivantes :

  • Insertion dans une orbite circulaire « parking » autour de la Terre.
  • Insertion de l’engin spatial sur une trajectoire vers Mars.
  • Séparation de l’engin spatial et du véhicule de lancement.
  • Repérage initial par le Deep Space Network (voir ci-dessous).
  • Vérification de l’état de l’engin spatial.
  • Exécution d’un ensemble minimum de commandes de post-lancement.

Trajectoire et navigation spatiale [modifier]

Antenne du réseau Deep Space Network à Goldstone en Californie, employée pour les communications avec les sondes spatiales de la NASA.
Antenne du réseau Deep Space Network à Goldstone en Californie, employée pour les communications avec les sondes spatiales de la NASA.

Les sondes effectuent un voyage d’environ six mois et parcourent la distance relativement courte de cinquante-six millions de kilomètres, dû au rapprochement exceptionnel de Mars et de la Terre à la fin de l’année 2003.

Les planètes ne seront plus aussi proches avant l’an 2287. Cependant Mars et la Terre se trouvent relativement proches l’une de l’autre, en moyenne tous les seize ans lorsque les deux planètes sont en opposition périhélique. C’est alors une période propice pour l’envoi de sondes vers Mars.

Le guidage des sondes a nécessité des mesures de très haute précision, prenant en compte un grand nombre de facteurs influençant la trajectoire. Par exemple :

  • l’absence de prise en considération de la pression de la radiation solaire, qui amène les panneaux solaires à se conduire comme une voile solaire, aurait entraîné une dérive de 4 km en 10 jours.
  • une erreur de 5 cm sur la position des antennes réceptrices entraîne un biais de 500 m près de Mars.

La navigation spatiale a employé la technique du DDOR (Delta Differential One-way Range ou variation différentielle directe de la distance), prononcée Delta Door (porte delta). Celle-ci fait appel au Deep Space Network, qui est un réseau de trois grandes stations de suivi radio des sondes interplanétaires, situées à Goldstone dans le désert Mojave en Californie, près de Madrid en Espagne, et près de Canberra en Australie. Chaque station de suivi comporte au moi



20/01/2008
0 Poster un commentaire

A découvrir aussi


Inscrivez-vous au blog

Soyez prévenu par email des prochaines mises à jour

Rejoignez les 525 autres membres