Exoplanète
Exoplanète
Un article de Wikipédia, l'encyclopédie libre.
Une exoplanète ou planète extrasolaire désigne une planète orbitant autour d'une étoile autre que le Soleil.
Pendant longtemps, l'existence d'exoplanète n'a pu être prouvé par l'observation. La distance, mais aussi le manque de luminosité de ces objets célestes si petits en comparaison des étoiles autour desquelles ils orbitent ont rendu la détection impossible. Ce n'est que dans les années 1990 que les premières sont détectés de manière indirecte. Depuis, plusieurs centaines de planètes sont observés et leur nombre augmente rapidement.
Un biais dans les méthodes de détections utilisées fait que l'on a détecté majoritairement des planètes assez particulières comparés à celles présentes dans le système solaire. La découverte de ces planètes a obligé les astronomes à revoir les modèles de formations des systèmes planétaires qu'ils avaient élaboré en se basant sur le système solaire.
Depuis que les méthodes se sont améliorées, nombre de travaux de ce domaine visent à mettre en évidence des planètes ressemblant à la Terre et pouvant héberger une vie comparable à celle qui y existe.
Sommaire[masquer] |
Historique [modifier]
Prémices [modifier]
Depuis longtemps l'Homme s'interroge sur la question : « Sommes-nous seuls dans l'Univers ? ». Ce qui entraîne la question de savoir s'il existe ou non d'autres planètes sur lesquelles pourraient se développer d'autres formes de vie. Christiaan Huygens est le premier astronome à envisager l'utilisation des instruments d'observation afin de détecter de telles planètes.
Au cours du XXe siècle, grâce aux progrès technologiques des télescopes, tels que les détecteurs à couplage de charge (CCD), le traitement d'image, ainsi que le télescope spatial Hubble, qui permettent des mesures plus précises du mouvement des étoiles, beaucoup d'astronomes espéraient détecter des planètes extrasolaires. Dans les années 1980 et au début des années 1990, quelques annonces sont faites, reprises dans les média, puis, après vérifications (cela peut prendre des mois, des années), finalement démenties (c'est la force de la méthode scientifique). La communauté astronomique se désespère, et certains en concluent déjà que le système solaire ne serait peut-être qu'une singularité… Il faut attendre l'année 1995 pour que la découverte de la première exoplanète soit confirmée.
Découvertes [modifier]
La découverte de la première planète extrasolaire a été annoncée le 6 octobre 1995 par Michel Mayor et Didier Queloz (de l'observatoire de Genève), d'après des observations qu'ils ont réalisées à l'observatoire de Haute-Provence grâce à la méthode des vitesses radiales. L'étoile hôte est 51 Pegasi [1], dans la constellation de Pégase, à environ 40 années-lumière de la Terre.
Depuis lors, plus de 200 planètes ont été détectées, dont beaucoup par une équipe menée par Geoffrey Marcy de l'université de Californie à Berkeley.
Plus de la moitié ont été découvertes à l'UNIGE (Université de Genève) par des équipes internationales.
Le premier système où l'on a détecté plusieurs planètes était Upsilon Andromedae, dans la constellation d'Andromède. Le deuxième fut 55 Cancri [2]. Ce dernier est le plus grand système planétaire connu à ce jour (hormis le nôtre) car il contient au moins quatre planètes.
La majorité des planètes détectées pour l'instant sont des géantes gazeuses ayant une orbite très excentrique, certaines se sont finalement révélées être des naines brunes. Le fait de découvrir essentiellement des géantes gazeuses proches de leur étoile est généralement interprété comme un biais de l'observation : il est beaucoup plus simple de découvrir une planète massive tournant rapidement autour de son étoile par la méthode de la vitesse radiale qui détecte la planète en interpolant sa présence par les fluctuations de la trajectoire de l'étoile.
Au premier semestre 2005, une polémique a agité le monde astronomique. Des équipes de la Nasa et de l'ESO ont annoncé des découvertes grâce au VLT et au télescope spatial Spitzer. Finalement, il semble que l'Europe a bien obtenu les premières images directes de planètes extrasolaires. En l'occurrence, elles orbitent autour de la naine brune GPCC-2M1207 et de l’étoile GQ Lupi. Celà dit, le compagnon de GQ Lupi est probablement une naine brune.
Inventaire [modifier]
Au 31 mai 2007 on recense[3] :
- 241 exoplanètes
- 218 systèmes planétaires dont 26 multiples
Exoplanètes remarquables [modifier]
- C'est le 27 novembre 2001 que l'on détecte la première géante gazeuse, Osiris, contenant de l'oxygène et du carbone dans son atmosphère. Cette planète étant très proche de son étoile, elle voit son atmosphère être soufflée par cette dernière. Ce phénomène a poussé les scientifiques à imaginer une classe particulière d'exoplanètes, les planètes chtoniennes, qui sont des résidus rocheux de géantes gazeuses à l'atmosphère soufflée par leur étoile.
- Le 25 août 2004, une planète, Mu Arae c ou la Vénus de Mu Arae, de 14 masses terrestres a été découverte. Cette masse étant en deçà d'une limite théorique de 15 masses terrestres en dessous de laquelle une planète peut être tellurique, les scientifiques pensent qu'il peut s'agir d'une très grosse planète rocheuse, la première de ce type qui serait donc découverte. Néanmoins, il peut tout aussi bien s'agir d'une très petite planète gazeuse.
- En 2005, pour la première fois, des astronomes ont pu discerner la lumière émise directement par deux planètes, malgré la lueur éblouissante et toute proche de leurs étoiles. Jusqu'alors, les découvertes n'étaient qu'indirectes, en regardant les perturbations exercées par les planètes sur leurs étoiles ou en mesurant une baisse de luminosité lors d'un transit. Cette fois, deux découvertes presque simultanées ont été faites par deux équipes différentes observant des planètes différentes. Mais comme les deux équipes ont toutes deux utilisé le télescope spatial infrarouge américain Spitzer, la Nasa a décidé de profiter de l'occasion pour annoncer les deux découvertes en même temps.
Il est cependant important de préciser que les deux exoplanètes observées avaient déjà été détectées auparavant grâce à la technique de la vitesse radiale.
- Le 14 juillet 2005, l'astrophysicien Maciej Konacki du California Institute of Technology (Caltech) a annoncé dans la revue Nature la découverte d'une exoplanète (HD 188753 Ab) dans un système de trois étoiles qui se trouve à 149 années-lumière de la Terre. Grâce au télescope Keck 1 de Hawaii, il a pu trouver cette planète dont la révolution autour de son étoile se fait en moins de quatre jours. Les modèles actuels (juillet 2005) de formation des planètes n'expliquent pas comment une telle planète peut naître dans un environnement si instable d'un point de vue gravitationnel. Cette planète a été surnommée « planète Tatooine » par son découvreur en hommage à la planète du même nom dans le film La Guerre des étoiles. Des vues d'artistes du système stellaire HD 188753 sont disponibles sur le site de la NASA.
- Le 26 janvier 2006, le Probing Lensing Anomalies NETwork (PLANET) dirigé par le français Jean-Philippe Beaulieu a découvert la planète OGLE-2005-BLG-390Lb qui semble être la première exoplanète tellurique connue. Cette planète se situe à 22 000 années-lumière de la Terre. Sa masse vaut environ cinq fois celle de la Terre, sa température de -220°C (53K) ce qui laisse supposer qu'il s'agit d'une planète solide.
- Le 17 mai 2006, une équipe de chercheur de planètes (dont Michel Mayor fait partie) annonce la découverte, grâce au spectrographe HARPS, de trois planètes neptuniennes autour de l'étoile de type solaire HD 69830. Les masses sont respectivement de 10, 12 et 18 fois la masse terrienne (ce qui est faible, Jupiter fait 317 x la masse de la Terre) Ce système possède probablement une ceinture d'astéroïdes à environ 1 UA de l'étoile.
- Le 4 août 2006, Ray Jayawardhana et Valentin Ivanov ont repéré, grâce au New Technology Telescope de 3,5 m de l'observatoire de La Silla de l'Observatoire européen austral (ESO), Oph 162225-240515, un système double à deux planètes tournant l'une autour de l'autre et flottant librement dans l'espace.
- Le 18 septembre 2006, une équipe d'astronomes du Smithsonian annonce la probable découverte d'un nouveau type de planète : avec un rayon équivalent à 1,38 fois celui de Jupiter mais qui ne pèse même pas la moitié de sa masse, c'est l'exoplanète la plus légère jamais découverte! Cela lui confère une densité inférieure à celle du liège, qui lui permettrait de flotter confortablement s'il existait un récipient d'eau assez volumineux pour la contenir. L'objet est baptisé HAT-P-1; son étoile est l'astre principal d'un système double, situé à quelque 450 années-lumière de la Terre dans la constellation du Lézard et connu sous le nom très poétique ADS 16402. Les deux étoiles sont similaires au Soleil mais plus jeunes, environ 3,6 milliards d'années.
- Le 5 octobre 2006, Kailash Sahu, du Space Telescope Science Institute de Baltimore, et ses collègues américains, chiliens, suédois et italiens auraient découvert, grâce au télescope spatial Hubble, 5 exoplanètes d'une nouvelle classe baptisées "planètes à période de révolution ultra-courte" (USPP : Ultra-Short-Period Planet) parce qu’elles font le tour de leur astre en moins d’une journée terrestre, 0,4 jour (moins de 10 heures) pour la plus rapide ! Les objets semblent être des planètes gazeuses géantes de faible densité similaires à Jupiter, tournant autour d'étoiles plus petites que le Soleil.
- Le 25 avril 2007, le télescope Harps de 3,6 m de l'Observatoire de La Silla de l'ESO au Chili annonce la découverte d'une planète "de type terrestre habitable" : Gliese 581 c, orbitant autour de l'étoile Gliese 581 située à seulement 20,5 années-lumières de la Terre. Trois laboratoires associés du CNRS ont participé à la découverte, avec des chercheurs de l'Observatoire de Genève et du Centre d'astronomie de Lisbonne[4].
Méthodes de détections [modifier]
Détecter une exoplanète de manière directe n'est pas une chose facile, et ce pour plusieurs raisons :
- une planète ne produit pas de lumière : elle ne fait que refléter celle qu'elle reçoit de son étoile, ce qui est bien peu.
- la distance qui nous sépare de l'étoile est infiniment plus importante que celle qui sépare l'exoplanète et son étoile : le pouvoir séparateur des instruments de détection doit donc être très élevé pour pouvoir les distinguer.
Ainsi, les seules méthodes de détection qui fonctionnaient jusqu'à très récemment sont appelées méthodes "indirectes", car elles ne détectent pas directement les photons venant de la planète. Il existe plusieurs méthodes, présentes et futures pour détecter une exoplanète. La plupart sont détectées depuis les observatoires aux sols.
Par la vitesse radiale [modifier]
Cette méthode est basée sur l'étude du spectre lumineux de l'étoile. Les mouvements d'un astre sont influencés par la présence d'une planète orbitant autour de lui, ce qui provoque un décalage périodique de sa position. Cela permet de déterminer grâce à l'effet Doppler-Fizeau la vitesse radiale du spectre lumineux. De manière identique aux binaires spectroscopiques, ceci nous apporte des informations concernant la position de l'orbite de la planète ainsi que sur sa masse.
Il est à noter que cette méthode de détection est plus performante pour des vitesses radiales élevées : autrement dit, pour des planètes évoluant très près de leur étoile. Ce qui explique que de nombreuses exoplanètes découvertes jusqu'à aujourd'hui ont une orbite très proche de leur étoile.
C'est par cette méthode que la plupart des planètes extrasolaires ont été détectées.
Par le transit [modifier]
Transit primaire (méthode indirecte) [modifier]
Cette méthode de détection indirecte est basée sur l'étude de la luminosité de l'étoile. En effet, si celle-ci varie périodiquement cela peut provenir du fait qu'une planète passe devant.
Cette méthode a été proposée pour la première fois en 1951 par Otto Struve de l'observatoire Yerkes de l'université de Chicago. Elle a été proposée à nouveau à deux reprises : en 1971 par Franck Rosenblatt de l'université Cornell, puis en 1980 par William Borucki du centre de recherche Ames de la NASA, en Californie.
Bien que la variation de luminosité d'une étoile soit plus facilement repérable que la variation de sa vitesse radiale, cette méthode se révèle peu efficace en terme de quantité de planètes détectées par rapport à la somme des étoiles observées. En effet, on ne peut l'utiliser que dans le cas où nous observons le système stellaire quasiment par la tranche. On peut montrer que pour des orientations aléatoires de l'orbite, la probabilité géométrique de détection par cette méthode est inversement proportionnelle à la distance entre l'étoile et la planète. On estime à 5% des étoiles avec une exoplanète la quantité détectable avec cette méthode.
Cependant, elle a l'avantage de ne nécessiter l'usage que de télescopes de dimensions raisonnables.
Dans notre propre système solaire, on peut aussi observer des transits de planètes : les transits de Vénus et de Mercure ne peuvent cependant être observés tout au plus que quelques fois par siècle.
Transit secondaire (méthode semi-directe) [modifier]
Le principe repose sur le transit secondaire, c’est-à-dire quand la planète passe derrière l'étoile. Dans ce cas on peut détecter les photons provenant de l'hémisphère éclairé de la planète, ce qui fait de cette méthode une méthode en semi-directe. En résumé, on étudie le signal lumineux provenant d'une planète éclipsée par son étoile et l'on retire ensuite le signal lumineux émis par l'étoile (que l'on a mesuré auparavant), on obtient alors la signature de la planète.
La première détection du transit secondaire a été faite avec le télescope spatial Hubble en 2003 sur l'étoile HD 209458 (voir ce lien pour plus de détails (en anglais)).
Récemment, des équipes d'astronomes ont réussi à détecter deux exoplanètes de manière directe, par l'utilisation du satellite Spitzer. Celles-ci, qui étaient déjà connues, ont été repérées grâce à la lumière infrarouge qu'elles émettaient.
Cela ouvre de nouvelles opportunités dans le domaine de l'observation. En effet, les chercheurs vont désormais pouvoir essayer de comparer certaines caractéristiques essentielles des exoplanètes repérées jusque là, telles que la couleur, la réflectivité et la température. Ceci permettra de mieux comprendre la manière dont celles-ci viennent à se former.
Par astrométrie [modifier]
Elle repose sur la détection des perturbations angulaires de la trajectoire d'une étoile. Plus la masse de la planète, et la distance qui sépare l'étoile de la planète sont grandes, plus le système est proche de nous et donc visible.
Cette méthode, bien qu'elle soit connue depuis longtemps, n'avait pas encore été utilisée en raison des infimes variations qu'elle devait repérer. Mais ce sera bientôt chose possible avec notamment la mise en place du mode double champ du Very Large Telescope Interferometer (VLTI) appelé PRIMA.
Par l'effet de microlentille gravitationnelle [modifier]
Cette méthode s'appuie sur la courbure de la lumière émise par une étoile distante ou un quasar, lorsqu'un objet massif s'aligne « suffisamment » avec cette source, phénomène appelé « lentille gravitationnelle ». La distortion de la lumière est due au champ gravitationnel de l'objet lentille, une des conséquences de la relativité générale, comme l'a décrit Albert Einstein en 1915. Il en découle un effet de lentille, formation de deux images déformées de l'étoile distante, voire davantage.
Dans le cas de la recherche d'exoplanètes, la planète cible, en orbite autour de l'étoile lentille, fournit une information supplémentaire, permettant de déterminer sa masse et sa distance de l'étoile. On parle de microlentille car la planète n'émet pas ou très peu de lumière.
Cette technique permet d'observer des astres de masse même relativement faible, puisque les observations ne s'appuient pas sur la radiation reçue.
Directe [modifier]
L'utilisation combinée de systèmes de correction en temps réel appelés optique adaptative et de la coronographie a permis récemment de détecter une exoplanète directement à l'aide du VLT[5].
D'énormes efforts sont consacrés actuellement à l'amélioration des techniques d'optique adaptative, de coronographie stellaire, et de traitement d'image, afin de développer une imagerie astronomique à très haut contraste capable de détecter à terme des exoplanètes de la taille de la Terre. Ces méthodes sont détaillées dans la page principale.
Notes et références [modifier]
- ↑ (en) Star : 51 Peg
- ↑ (en) Star : 55 Cnc
- ↑ (fr) Catalogue des planètes Extra-solaires
- ↑ (fr) Première découverte d'une planète habitable hors du système solaire, dépêche de l'AFP du 25 avril 2007.
- ↑ (en), mais autour d'une étoile peu brillante (naine brune) Yes, it is the Image of an Exoplanet, sur le site de l'ESO
Voir aussi [modifier]
- Gliese 581 c
- Liste d'exoplanètes
- Jupiter chaud, Planète océan, des types d'exoplanètes.
- Projet spatial Darwin, un programme européen de recherche d'exoplanète et d'autres formes de vie.
- COROT, télescope spatial pour la détection d'exoplanètes.
- Télescope spatial Kepler
- Télescope spatial Spitzer
- Projet spatial Gaia
Sources [modifier]
- Planètes extrasolaires, Fabienne Casoli et Thérèse Encrenaz (Belin)
Liens externes [modifier]
- (fr) Encyclopédie officielle des exoplanètes, sur le site de l'Observatoire de Paris
- (fr) Les exoplanètes, sur le site Astrocosmos.net
- (fr) Des milliards de Terre, sur le site Luxorion
- (fr) Les exoplanètes, ou planètes extrasolaires, de l'Observatoire de Paris
- (fr) Planètes extrasolaires : qui a obtenu la première image ?, sur le site de la Cité des Sciences
- (fr) Découverte de la première exo-planète tellurique, sur le site Astrofiles.net
- Pour les jeunes
- Illustrations d'exoplanètes
- « Jupiter Chaud », vue d’artiste
- (fr) Alien Worlds, sur le site Luxorion
- (fr) La première image d'une planète extrasolaire, autour de 2M1207b
- (fr) GQ Lupi et son compagnon
- (fr) Exobank, site d'illustrations astro
- (en) Extrasolar visions de John Whatmough, sur le site Extrasolar.net
- (en) Extrasolar Planets de David A. Hardy
- (fr) [mp3] Le secret des exoplanètes, par Tristan Guillot, astrophysicien, chargé de recherche au CNRS à l’observatoire de Côte d’Azur