Atome - Partie 1

Atome

Un article de Wikipédia, l'encyclopédie libre.

Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une autre. Il est généralement constitué d'un noyau composé de protons et de neutrons autour desquels se trouvent des électrons. Sa taille caractéristique est de l'ordre du dixième de nanomètre (nm), soit 10-10 m.

La théorie atomiste, qui soutient l'idée d'une matière composée de "grains" indivisibles (contre l'idée d'une matière indéfiniment sécable), est connue depuis l'antiquité, et fut en particulier défendue par Démocrite, philosophe de la Grèce antique. Elle fut disputée jusqu'à la fin du XIXe siècle, mais n'est plus aujourd'hui l'objet de la moindre controverse. C'est en particulier sur cette notion d'atome que reposent les sciences de la matière modernes. L'atome n'est cependant plus considéré comme un grain de matière insécable, depuis les expériences de physique nucléaire ayant mis à jour sa structure au début du XXe siècle.

En chimie, les atomes sont les éléments de base. Ils constituent la matière et forment les molécules en partageant des électrons. Les atomes restent grosso modo indivisibles au cours d'une réaction chimique (en acceptant les légères exceptions que constituent les échanges des électrons périphériques).

Cependant, depuis le début du XXe siècle, des expériences de physique nucléaire ont mis en évidence l'existence d'une structure complexe pour le noyau atomique. Les constituants de l'atome que sont des particules élémentaires.

Sommaire

[masquer]

Caractéristiques de l'atome [modifier]

La majeure partie de la masse de l'atome se trouve concentrée dans un très faible volume (dimension de l'ordre de 10-15 m) : le noyau, composé de deux sortes de particules semblables, appelées nucléons :

mn = 1,67495 ×10-27 kg ;
  • les protons, particules de charge électrique positive égale à :
c=+e = 1,602 19 ×10-19 C,
et de masse égale à :
mp = 1,67265 ×10-27 kg.

La masse du proton étant très proche de celle du neutron, il est pratique de caractériser un noyau par son nombre de nucléons, appelé nombre de masse.

Autour du noyau se trouve « un nuage » de particules identiques : les électrons ; les dimensions de ce nuage électronique (de l'ordre d'un angström, ou 10-10 m) correspondent à celles de l'atome.

Les électrons possèdent une charge électrique négative égale à :

e = -1,602 189 ×10-19 C,

identique à celle du proton en valeur absolue ; leur masse est bien plus faible que celles des nucléons (1836 fois moindre) :

me = 9,109 53 ×10-31 kg.

La charge électrique d'un atome est neutre, car le nombre d'électrons (chargés négativement) du nuage électronique est égal au nombre de protons (chargés positivement) constituant le noyau. Ainsi, les charges électriques s'annulent d'un point de vue macroscopique.

Les atomes sont susceptibles de se charger électriquement en gagnant ou en perdant un ou plusieurs électrons : on parle alors d'ions. Du fait qu'un électron a une charge électrique négative, si un atome gagne un ou plusieurs électrons, la charge de l'atome devient négative (anion), et s'il en perd, la charge de l'atome devient positive (cation).

Les propriétés physiques et chimiques des atomes dépendent essentiellement du nombre de protons qui composent leur noyau. Aussi, les atomes sont-ils classés suivant ce nombre, appelé numéro atomique.

La matière constituée d'un ensemble quelconque d'atomes de même nombre atomique est un corps simple, ou élément chimique. Les atomes ayant un même nombre atomique, mais des nombres de masse différents (nombre de neutrons différent), sont appelés isotopes.

Les différents éléments chimiques naturels ou artificiels ont été ordonnés en fonction de leurs propriétés dans le tableau périodique des éléments.

Histoire de l'atome [modifier]

Le concept d'atome est particulièrement bien admis par le grand public, pourtant, paradoxalement, les atomes ne peuvent pas être observés par des moyens optiques et seuls quelques rares physiciens manipulent des atomes isolés. L'atome est donc un modèle essentiellement théorique. Bien que ce modèle ne soit plus aujourd'hui remis en cause, il a beaucoup évolué au cours du temps pour répondre aux exigences des nouvelles théories physiques et correspondre avec les différentes expérimentations effectuées.

Antiquité : un concept philosophique et intuitif [modifier]

Il est probable que plusieurs peuples aient développé la notion de «grain composant la matière», tant ce concept semble évident lorsque l'on morcelle une motte de terre, ou en regardant une dune de sable. Dans la culture européenne, ce concept apparaît pour la première fois dans la Grèce antique au Ve siècle av. J.-C., chez les philosophes présocratiques, notamment Leucippe, env. 460-370 av. J.-C., Démocrite et, plus tard, Épicure.

Il s'agit d'une conception, a priori du monde, qui fait partie de la recherche des principes de la réalité, recherche qui caractérise les premiers philosophes : on suppose que la matière ne peut se diviser indéfiniment, qu'il y a donc une conservation des éléments du monde, qui se transforment ou se combinent selon des processus variés. La décomposition du monde en quatre éléments (eau, air, terre, feu) peut donc compléter cette thèse. L'atomisme est une solution concurrente, qui naît de l'opposition de l'être et du néant : l'atome est une parcelle d'être qui se conserve éternellement, sans quoi les choses finiraient par disparaître. Ce fut sans doute un tournant philosophique majeur, à l'origine du matérialisme et de la critique de la religion. Cependant, même si l'empirisme épicurien tente d'établir cette hypothèse sur des bases scientifiques, l'atome demeure une intuition sans confirmations.

La chimie du XVIIIe siècle — les éléments [modifier]

Depuis des millénaires, on a remarqué que les produits se transforment : le feu, la métallurgie (transformation du minerai en métal), la corrosion (dégradation du métal), la vie, la cuisson des aliments, la décomposition de la matière organique… Par exemple, pour Empédocle, les transformations de la matière s'expliquaient de la manière suivante : il y avait quatre types d'éléments (eau, air, terre, feu) qui s'associaient et se dissociaient, en fonction de l'amour ou de la haine qu'ils se portaient — les fameux « atomes crochus ». Au Moyen Âge, les alchimistes ont étudié ces transformations et remarqué qu'elles suivent des règles bien précises. Vers 1760, des chimistes britanniques commencent à s'intéresser aux gaz produits par les réactions, afin d'en mesurer le volume et de les peser. Ainsi, Joseph Black, Henry Cavendish et Joseph Priestley découvrent différents « airs » (c'est-à-dire gaz) : l'« air fixe » (le gaz carbonique), l'« air inflammable » (le dihydrogène), l'« air phlogistiqué » (le diazote), l'« air déphlogistiqué » (le dioxygène)… (Le terme « phlogistique » provient de la théorie du chimiste allemand Georg Ernst Stahl, au début du XVIIIe siècle, pour expliquer la combustion ; cette théorie fut balayée par Lavoisier.)

Antoine Laurent de Lavoisier (chimiste français) énonce en 1773 que [1] : « Rien ne se perd, rien ne se crée, tout se transforme » (formulé d'une manière légèrement différente à l'époque) signifiant par là que :

  • la masse se conserve pendant les réactions chimiques.
    Les scientifiques avaient observé que si l'on pesait la matière solide avant et après la combustion, on avait une variation de masse ; ceci provient d'un échange avec l'air (l'oxygène s'incorpore et alourdit, le gaz carbonique et la vapeur d'eau s'en vont et allègent). Il suffit pour s'en rendre compte de faire brûler dans une cloche fermée, et de peser la cloche en entier, produit solide et gaz compris : la masse totale ne change pas. ;
  • les substances se décomposent en « éléments », c'est l'organisation de ces éléments qui change lors d'une réaction.

Cette notion marque la véritable naissance de la chimie. Les chimistes ont donc commencé à recenser les éléments dont sont composées toutes les substances et à créer une nomenclature systématique — oxygène : qui génère des acides (οξυs signifie « acide » en grec) — hydrogène : qui génère de l'eau… Par exemple, en 1774, Lavoisier, en suivant les travaux des chimistes britanniques, établit que l'air se compose en « air vital » (dioxygène) et en « air vicié et méphitique, mofette » (diazote) ; en 1785, il décompose l'eau (en faisant passer de la vapeur d'eau sur du fer chauffé au rouge) et montre donc que ce n'est pas un élément, mais que l'eau est décomposable en éléments (c'est en fait une pyrolyse). Le terme d'« analyse » provient d'ailleurs de cette notion de décomposition, lusis (λυσιs) signifie « dissolution » en grec : on décompose les produits (par attaque acide, en les brûlant, en les distillant...) jusqu'à obtenir des substances simples reconnaissables facilement (l'hydrogène, l'oxygène, le carbone, le fer...).

On a donc la première constatation expérimentale de la décomposition de la matière en substances élémentaires.

La physique du XVIIIe siècle — les particules [modifier]

Un autre pas, fait en parallèle, vient de l'étude des propriétés des gaz et de la chaleur (thermodynamique).

Les fluides (liquides et gaz) sont étudiés en Europe depuis l'Antiquité, mais c'est au milieu du XVIIe siècle que l'on commence vraiment à cerner leur propriétés, avec l'invention du thermomètre (thermoscope de Santorre Santario, 1612), du baromètre et du vide pompé (Evangelista Torricelli, 1643), l'étude de l'expansion des gaz (Gilles Personne de Roberval, 1647), la pression atmosphérique (Blaise Pascal et Florin Perrier, 1648), les relations entre pression et volume (Robert Boyle en 1660, Edmé Mariotte en 1685), la notion de zéro absolu (Guillaume Amontons, 1702)...

René Descartes (mathématicien, physicien et philosophe français) émet l'idée, en 1644, que les gaz sont composés de particules tourbillonnantes. Mais il ne s'agit là encore que d'une conception imagée, sans appui expérimental ; dans le même ordre d'idées, Descartes pensait que c'était aussi un tourbillon de « matière subtile » qui entraînait la rotation des planètes (ceci fut mis en défaut par Isaac Newton avec l'attraction universelle en 1687).

Cependant, cette notion de corpuscules inspira d'autres scientifiques. Les mathématiciens suisses Jakob Hermann (1716) et Leonhard Euler (1729), mais surtout le physicien suisse Daniel Bernoulli (1733), effectuent des calculs en supposant que les gaz sont formés de particules s'entrechoquant, et leurs résultats sont en accord avec l'expérience. C'est la conception « cinétique » des gaz, c'est-à-dire l'explication de la température et de la pression par des particules en mouvement.

Une autre science se développe à la fin du XVIIIe siècle : la cristallographie. Ce qui intrigue les scientifiques, c'est l'observation des formes géométrique des cristaux naturels, et leur capacité à se cliver selon des plans lisses respectant ces symétries. Reprenant l'idée de classification des êtres vivants de Carl von Linné, on commence à rechercher et classer les minéraux (Jean-Baptiste Romé de L'Isle, minéralogiste français, 1772). L'abbé René-Just Haüy (cristallographe français), en 1781, suppose que la forme des cristaux reflète la symétrie d'une « brique élémentaire », le cristal étant un assemblage de ces briques. On retrouve ici cette notion de composant élémentaire de la matière.

XIXe siècle — le triomphe de l'atome [modifier]

À ce stade, ressortaient trois notions :

  • les corps chimiques sont décomposables en substances élémentaires ;
  • les gaz sont composés de corpuscules qui volent et s'entrechoquent ;
  • les cristaux sont composés de cellules dont la forme détermine la forme extérieure du cristal.

Ces notions ont en commun le fait que la matière homogène est composée de corpuscules tous semblables entre eux, mais trop petits pour être visibles. Les découvertes du XIXe siècle vont permettre de faire converger ces trois notions, et d'établir les notions de molécule et d'atome.

John Dalton (chimiste et physicien britannique), en 1804, mesure les masses des réactifs et des produits de réaction, et en déduit que les substances sont composées d'atomes sphériques, identiques pour un élément, mais différents d'un élément à l'autre, notamment par la masse de ces atomes. Il découvre également la notion de pression partielle (dans un mélange de gaz, la contribution d'un gaz donné à la pression totale). Il fut le premier à émettre les idées de la théorie atomique.

En 1807, Louis Joseph Gay-Lussac (physicien et chimiste français), établit la loi reliant la température et la pression d'un gaz. En 1808, il établit que les gaz réagissent en proportions déterminées ; les rapports des volumes des réactifs et des produits de réaction sont des nombres entiers petits. Le fait que ce soit des nombres entiers, a induit fortement à penser que la matière n'est pas « continue » (pensée dominante à cette époque), mais faite d'éléments discontinus.

Amedeo Avogadro (physicien italien), en 1811, énonce, sans preuve, que pour une température et une pression fixées, un volume donné de gaz contient toujours le même nombre de molécules, et ce quel que soit le gaz. Il fait également l'hypothèse que les gaz sont polyatomiques, et définit nettement molécules et atomes. André-Marie Ampère (1814), Jean-Baptiste Dumas (1827) et William Prout (1834) arrivent à la même conclusion.

En 1821, John Herapath (mathématicien britannique) publie une théorie cinétique des gaz pour expliquer la propagation des sons, les changements de phase (vaporisation, liquéfaction) et la diffusion des gaz. Robert Brown (botaniste britannique), en 1827, observe le mouvement de grains de pollen dans l'eau ; les grains vont en ligne droite, et ne changent de direction que lors d'un choc avec un autre grain ou bien contre une paroi. C'est de ce comportement, le « mouvement brownien », que s'inspireront les physiciens pour décrire le mouvement des molécules de gaz.

Gabriel Delafosse, en 1840, suppose que l'on peut dissocier la composante élémentaire du cristal et son organisation ; ainsi, la brique élémentaire de Haüy pourrait être un réseau aux nœuds duquel se trouveraient des « molécules » ; ce serait la forme du réseau qui donnerait la forme au cristal et non pas nécessairement la forme des molécules. Louis Pasteur (chimiste et biologiste français), en 1847, établit le lien entre la forme des molécules et la forme des cristaux (en fait, la molécule donne sa forme au réseau, et le réseau sa forme au cristal). Auguste Bravais (physicien français), en 1849, détermine les 32 réseaux cristallins possibles. En 1858, Rudolf Clausius (physicien allemand) définit le libre parcours moyen d'une molécule dans un gaz (distance moyenne parcourue entre deux chocs). Partant de là, en 1859, James Clerk Maxwell (physicien écossais) introduit la notion de dispersion statistique des vitesses des molécules dans la cinétique des gaz. Ceci permit à Ludwig Boltzmann (physicien autrichien), en 1858, d'estimer la taille des molécules et de définir la répartition statistique des vitesses dans un gaz.

Dimitri Ivanovitch Mendeleïev (chimiste russe), en 1869, classe les atomes par masse croissante, et remarque qu'il y a une périodicité dans leurs propriétés chimiques. Il établit donc un tableau classant les éléments ; les trous dans ce tableau permirent de découvrir de nouveaux éléments.

Bilan [modifier]

La notion d'atome et de molécule a donc permis le succès de la thermodynamique statistique, de la chimie et de la cristallographie. À cette notion, vont correspondre des modèles qui seront affinés au cours du développement de la physique et particulièrement précisés par les découvertes de la physique quantique durant le XXe siècle, et notamment :

Historique des modèles de l'atome [modifier]

Dans l'histoire des sciences, plusieurs modèles de l'atome ont été développés, au fur et à mesure des découvertes des propriétés de la matière. Aujourd'hui encore, on utilise plusieurs modèles différents ; en effet, le modèle le plus récent est assez complexe, l'utilisation de modèles « anciens » ou partiellement faux, mais plus simples, facilite la compréhension, donc l'apprentissage et la réflexion.

Depuis l'antiquité grecque, on supposait que la matière pouvait se fractionner en petits morceaux jusqu'à obtenir des grains insécables, qu'elle était comme « de la poussière dans la lumière ». C'est avec l'expérience de Rutherford que l'on atteint enfin ce grain : les particules alpha, en traversant la matière, voient leur trajectoire perturbée, ce qui va permettre enfin de savoir comment est organisée cette « poussière »...

  • 1675 : Jean Picard observe une luminescence verte en agitant un tube de baromètre ; on découvrira quelques siècles plus tard que cela est dû à l'électricité statique et aux vapeurs de mercure ;
  • 1854 : Geissler et Plücker découvrent les rayons cathodiques, des rayons verts luminescents lorsque l'on établit une forte tension électrique dans une ampoule dont on a pompé l'air (faible pression de gaz) ; ils inventent ainsi la lampe à décharge, qui éclaire maintenant nos supermarchés d'une lumière blanche, nos rues et nos stationnements d'une lumière orange (lampes au sodium) ;
  • 1897 : J. J. Thomson établit que ces rayons cathodiques sont constitués de particules chargées négativement arrachées à la matière, et découvre ainsi l'électron ; c'est la première décomposition de l'atome ;
  • 1900 : Max Planck montre la quantification des échanges d'énergie dans la matière (recherches sur le corps noir) ;
  • 1911 : expérience de Rutherford : il bombarde une feuille d'or par des particules alpha (des noyaux d'hélium, chargés positivement, obtenus par radioactivité) ; il en déduit que :
    • la plupart des particules vont en lignes droites, donc la matière est « pleine de trous » ;
    • mais certaines sont déviées et même rebroussent chemin, donc elles rencontrent des îlots très concentrés de matière chargée positivement (les + se repoussent entre eux).
    Il en déduit le modèle atomique planétaire : l'atome est constitué d'un noyau positif très petit et d'électrons tournant autour ; ce modèle pose un gros problème : en tournant, les électrons devraient perdre de l'énergie par rayonnement, et donc s'écraser sur le noyau… (ex.: Capture K)
  • 1913 : Niels Bohr réunit les concepts de Planck et de Rutherford, et propose un modèle atomique quantique: les orbites des électrons ont des rayons définis, il n'existe que quelques orbites « autorisées » ; ainsi, les échanges d'énergie quantifiés correspondent à des sauts entre les orbites définies, et lorsque l'électron est sur l'orbite la plus basse, il ne peut pas descendre en dessous et s'écraser (mais ce modèle n'explique pas pourquoi) ;
  • 1914 : l'expérience de Franck et Hertz valide le modèle de Bohr : ils bombardent de la vapeur de mercure avec des électrons ; l'énergie cinétique perdue par les électrons traversant les vapeurs est toujours la même ;
  • 1924 : Louis de Broglie postule la dualité onde-corpuscule ;
  • 1926 : Schrödinger modélise l'électron comme une onde, l'électron dans l'atome n'est donc plus une boule mais un « nuage » qui entoure le noyau ; ce modèle, contrairement aux autres, est stable car l'électron ne perd pas d'énergie.


16/09/2007
0 Poster un commentaire

A découvrir aussi


Ces blogs de Sciences pourraient vous intéresser

Inscrivez-vous au blog

Soyez prévenu par email des prochaines mises à jour

Rejoignez les 327 autres membres