Station spatiale - Partie 3

Télécommunications[modifier]
Les différents systèmes de télécommunications utilisés à bord de la station spatiale internationale.

Les communications radio sont essentielles pour les opérations de la station spatiale : elles permettent les échanges des données télémétriques et scientifiques entre la station et les centres de contrôle de mission répartis autour du globe. Elles sont également utilisées durant les manœuvres de rendez-vous et d'accostage ainsi que pour les échanges entre les membres de l'équipage, les contrôleurs de vol et avec les membres de la famille. Pour assurer ces liaisons, la station spatiale dispose de plusieurs systèmes de télécommunications[78].

Le premier système installé chronologiquement est l'équipement russe VHF Regul qui permet, entre autres, les transmissions de données télémétriques entre la partie russe de la station et le centre de contrôle de mission installé à Moscou (TsUP) via un réseau de stations de réception terrestres et les constellations de satellites de télécommunications Loutch et Molniya. Les transmissions passent par l'antenne Lira installée sur le module Zvezda. À l'intérieur de la partie russe de la station, les échanges radios sont assurés par un système analogique utilisant une liaison en cuivre[79],[80],[81].

La partie non russe de la station spatiale a recours à deux systèmes de communication radio distincts dont les antennes sont montées sur le segment central Z1 de la poutre : une liaison en bande S utilisée pour les communications en audio et une liaison en bande Ku utilisée à la fois pour l'audio, la vidéo et les données. Ces communications sont relayées par le réseau de satellites de télécommunications géostationnaires TDRS permettant une liaison quasiment continue avec le centre de contrôle de mission de la NASA (MCC-H) à Houston[82]. Ce système de télécommunication peut être également utilisé pour transmettre des données au centre de contrôle de Moscou par le biais d'une liaison téléphonique permanente entre le centre de contrôle de Houston et celui de Moscou[80]. Les données échangées avec le bras téléopéré Canadarm 2, les laboratoires Colombus et Kibō sont routées également via les réseaux en bande S et Ku ; s'ils sont mis en place, le futur système European Data Relay Satellite et son équivalent japonais pourront être également utilisés[82],[83]. À l'intérieur de la station les communications sont assurées par un réseau sans fil numérique interne[84].

Un système radio en UHF est utilisé durant les sorties extravéhiculaires : les Russes peuvent ainsi communiquer soit avec la partie russe de la station soit avec le centre de contrôle au sol à Terre à condition qu'une station terrestre soit à portée (mais dans ce dernier cas avec parfois des interférences créées par la radio du contrôle du trafic aérien au sol) tandis que les autres astronautes sont en liaison avec la partie non russe de la station[23],[80].

Les liaisons UHF sont également utilisées durant les manœuvres d'accostage et de séparation avec la station par les vaisseaux Soyouz, Progress, HTV, ATV et la navette spatiale (celle-ci utilise toutefois également les bandes S et Ku via le réseau TDRSS) pour recevoir des instructions des centres de contrôle de mission à Terre et de l'équipage de la station spatiale[23]. Les vaisseaux qui fonctionnent en mode automatique comme l'HTV et l'ATV disposent par ailleurs de leur propre système de communications : l'ATV utilise un laser installé sur le vaisseau et un jeu de miroirs installés sur le module Zvezda, désigné sous l'appellation Proximity Communications Equipment pour accoster la station tandis que l'HTV utilise pour son approche un système basé sur le réseau GPS[80],[85],[86].

Système de support de vie[modifier]

Les échanges entre les différents composants du système de support de vie de la station spatiale.

Le système de support de vie de la station spatiale a en charge le maintien d'un environnement viable pour l'équipage à l'intérieur des modules pressurisés. Dans l'espace entièrement clos et isolé de la station, cela implique principalement de remplacer périodiquement l'oxygène consommé par les astronautes, d'éliminer le dioxyde de carbone expiré, de filtrer les microorganismes, particules et gaz organiques, de mettre à disposition l'eau nécessaire aux différents usages, de contrôler et maintenir la température, la pression et la composition de l'atmosphère dans une fourchette fixe et enfin de surveiller l'apparition d'incendie et éventuellement de le combattre[87].

Pour limiter la masse des consommables (eau et oxygène) transportés par les vaisseaux cargo, la station est équipée de systèmes permettant de recycler l'eau et de régénérer l'atmosphère de la station. Ceci permet de réduire la masse des consommables à placer en orbite annuellement de 6,7 tonnes pour un équipage permanent de 6 personnes[88].

Frank de Winne démonte le distillateur d'urine (UPA) en panne qui fait partie du système de recyclage des eaux usées.

Jusqu'en 2008 cette fonction était uniquement prise en charge par le système Elektron installé dans le module russe Zvezda tandis que le dioxyde de carbone était éliminé grâce au système Vozdukh à bord du même module. Cet équipement a été par la suite renforcé par le système américain ECLSS installé dans trois racks du module Tranquility et composé du système OGS pour la régénération de l'atmosphère et WRS (Water Recovery System) qui collecte toutes les eaux usées, eaux de toilette, urine, vapeur d'eau contenue dans l'atmosphère de la cabine. L'urine est distillée dans un premier sous-ensemble (UPA) puis le Water Processor Assembly (WPA) traite les autres eaux usées et le produit de l'UPA. Après avoir séparé les gaz et les particules solides, WPA élimine les déchets organiques et les microorganismes grâce à un ensemble de filtres et à un réacteur catalytique à haute température puis génère de l'eau potable

[87], [89].Cette installation a permis de faire passer l'équipage permanent à six personnes. La consommation en eau par homme est estimée à 3,5 litres par jour : sur ce volume, WRS permet d'économiser 1,3 litre en recyclant l'urine et autres eaux usées, tandis qu'Elektron récupère 1,5 en condensant l'humidité de la cabine[88].

Les deux systèmes produisent de l'oxygène par électrolyse de l'eau ; le système américain peut potentiellement combiner l'hydrogène produit par l'électrolyse avec le CO² expiré par l'équipage en générant de l'eau et du méthane ce dernier étant expulsé à l'extérieur[90]. Il existe un système de secours reposant sur des réserves d'oxygène stockées en bouteilles et des générateurs d'oxygène à partir de produits solides[91].

D'autres sous-produits du métabolisme humain comme le méthane produit par le système intestinal et l'ammoniaque contenu dans la sueur sont éliminés par des filtres à cartouche de charbon activé[91]. L'atmosphère à bord de la station est maintenu à une pression similaire à celle de l'atmosphère terrestre au niveau de la mer[92] soit 101,3 kPa [93]. L'utilisation d'une composition analogue à celle de l'atmosphère terrestre est plus confortable pour l'équipage et bien plus sûre qu'une atmosphère d'oxygène pure[94].

La vie à bord de la station[modifier]

Photo de groupe de l'équipage permanent de l'expédition 21

Les équipages : composition et relève[modifier]

L'équipage est composé d'un commandant, assurant un rôle de coordinateur, et d'ingénieurs de bord. A chaque changement majeur de sa composition, l'équipage se voit affecter un nouveau numéro d'expédition. Depuis que l'équipage permanent est passé à 6 personnes en mai 2009, chaque astronaute séjourne en moyenne 6 mois et l'équipage est renouvelé par moitié tous les 3 mois entraînant un changement de numéro d'expédition. L'expédition 1, qui est la première à occuper la station à compter du 2 novembre 2000, était composée de deux cosmonautes russes dirigés par l'astronaute de la NASA William M. Shepherd. L'expédition 21 a été confiée pour la première fois à un représentant d'un autre pays : Frank De Winne de l'agence spatiale européenne[95].

Début 2010 en incluant l'expédition 22, 58 personnes avaient fait partie de l'équipage permanent de la station, dont 8 ont participé à 2 expéditions. Les professions d'origine sont scientifiques : 23 ingénieurs, 4 médecins, 6 chercheurs, 19 pilotes militaires, 6 pilotes d'essais et 6 autres militaires. Tous ont fait des études supérieures poussées : les militaires ont souvent également des diplômes et des expériences relevant du métier d'ingénieur. L'âge moyen lors du séjour de 45 ans et demi découle des critères de recrutement (personnes fortement diplômées et ayant fait leurs preuves dans le cadre professionnel) mais également de la durée de l'entraînement qui s'étale sur plusieurs années et des aléas du programme. La durée moyenne d'un séjour à bord de la station est d'environ cinq mois et demi.

Coup de feu dans le laboratoire Destiny

On compte parmi les participants 30 américains, 27 russes, 3 européens, 2 japonais et 1 canadien. La proportion de cosmonautes russes dans les équipages devrait passer, à compter de 2010, à 50% conformément aux quotas fixés. Cinq femmes, toutes américaines ont fait partie d'un équipage dont Peggy Whitson qui y a séjourné à deux reprises, la deuxième fois en tant que commandant de la station spatiale [N 4]. Par ailleurs huit touristes payants (fin 2009), non décomptés dans ce qui précède, ont séjourné jusqu'à 16 jours en utilisant le quota des places réservées à l'agence spatiale russe[95].

L'emploi du temps de l'équipage[modifier]

L'heure légale à bord de la station est, de manière arbitraire, l'heure UTC (Paris est à UTC+1 en hiver). Lorsque la station reçoit la visite de la navette spatiale, l'équipage de la station se cale généralement sur la référence horaire de la navette (Mission Elapsed Time ou MET), qui est fixée en fonction de l'heure de lancement de celle-ci[96],[97].

Une journée typique à bord de la station démarre à 6 heures. Une inspection de la station est effectuée puis l'équipage prend son petit déjeuner. Une conférence a lieu avec le centre de contrôle pour organiser la journée avant d'entamer le travail à 8 h 10. Une séance d'exercice physique est planifiée au cours de la matinée de travail. Cette dernière s'achève à 13 h 05. Après une pause déjeuner d'une heure, le travail reprend avec un nouvel exercice physique intercalé au cours de l'après-midi. La journée de travail s'achève à 19 h 30. Le dîner et une réunion de l'équipage suit. Enfin la période allouée au repos démarre à 21 h 30. En général, l'équipage travaille dix heures par jour en semaine et cinq heures le samedi, le reste du temps étant consacré aux activités de détente[98].

Les phases de repos[modifier]

N Stott installe son compartiment de repos dans le laboratoire Kibo ... côté plancher

La station comporte des compartiments dédiés au repos : deux dans la partie russe, deux dans le module Harmony, un dans le module Kibo. Les compartiments américains sont amovibles et s'installent dans un emplacement de rack tandis que les Russes disposent de mini-cabines avec des cloisons en dur. Dans les deux cas, l'occupant y dort dans un sac de couchage accroché à la paroi ; il peut y écouter de la musique, utiliser un ordinateur et y stocker quelques effets personnels[99],[100],[101]. Les visiteurs, qui n'ont pas d'emplacement dédié pour dormir, accrochent leur sac de couchage sur une cloison libre (on peut dormir en flottant dans la cabine mais généralement les astronautes évitent de le faire car ils peuvent heurter et endommager durant leur sommeil un équipement fragile)[102]. Toutes les 24 heures se succèdent 16 périodes d'obscurité et de jour, aussi, durant la période définie comme étant la nuit, des rideaux obturent les hublots. Par ailleurs il est nécessaire que dans les compartiments dédiés au repos l'air soit bien ventilé, car en impesanteur l'air chaud ne monte pas et l'astronaute peut se réveiller à cause d'une sensation d'asphyxie car sa tête se retrouve entourée d'une bulle de dioxyde de carbone exhalée durant son sommeil[101].

L'hygiène[modifier]

Depuis que le projet de module d'habitation américain a été abandonné, il n'est plus prévu que la station spatiale dispose de douche. Les membres de l'équipage se lavent en utilisant un robinet, des lingettes humides avec du savon présenté dans un conditionnement similaire à celui des tubes dentifrice. L'équipage dispose de shampoing ne nécessitant pas de rinçage et de pâte à dentifrice qui peut être avalée[102]. Il y a deux toilettes dans la station, situées respectivement dans les modules Zvezda et Destiny[99]. Les toilettes utilisent un système de succion généré par un ventilateur semblable à celui mis en œuvre dans la navette spatiale américaine. Les astronautes doivent s'attacher à la cuvette des toilettes, qui est équipée avec un système assurant l'étanchéité durant l'opération[101]. La succion générée par le ventilateur permet d'évacuer les déchets qui sont conditionnés dans des sacs stockés dans un container en aluminium. Lorsqu'un container est plein, il est transféré dans le vaisseau cargo Progress qui l'évacue[99],[103]. Les urines sont collectées à l'aide d'un tuyau, au bout duquel se trouve connecté un embout personnalisé adapté à la physiologie de l'utilisateur, ce qui permet aux hommes comme aux femmes d'utiliser le même système[100].

Les repas[modifier]

Repas dans le module Unity l'expédition 20

Il s'écoule de un à deux mois entre deux ravitaillements et il n'existe pas à bord de réfrigérateurs destinés à la conservation des aliments. La nourriture est donc essentiellement constituée de plats lyophilisés et de conserves auxquels s'ajoutent quelques légumes et fruits frais dans les jours qui suivent l'arrivée d'un vaisseau ravitailleur. Les boissons (sodas,…) sont fournies sous forme de poudre déshydratée. Les liquides et les soupes sont conditionnés dans des sachets hermétiques et consommés au moyen d'une paille, tandis que la nourriture solide est consommée en utilisant, comme à terre, une fourchette et un couteau[104],[99],[100].

Les menus, qui reviennent selon un cycle de 15 jours, sont choisis par chaque astronaute plusieurs mois avant son départ pour la station avec l'aide de diététiciens qui veillent à l'équilibre des repas. Des ajustements sont effectués pour tenir compte des conditions qui règnent dans la station : diminution de la proportion de fer qui est moins bien assimilé car le volume de globules rouges diminue, réduction de la quantité de sodium et augmentation de la dose de vitamine D pour favoriser la croissance osseuse. La nourriture épicée a généralement la préférence des astronautes car, en l'absence de gravité, les senteurs ne montent plus jusqu'aux muqueuses du nez et le sens du goût disparait en grande partie[101],[104].

Le ravitaillement est fourni à parts égales par les Russes et les Américains, avec quelques apports des autres partenaires, et transporté par les vaisseaux ravitailleurs disponibles. Les sachets de nourriture destinés à chaque astronaute sont identifiés par une étiquette d'une couleur donnée. L'équipage dispose dans deux des modules (Destiny et Zvezda) de fours permettant de réchauffer les plats et d'un distributeur d'eau qui délivre au choix de l'eau chaude ou froide. La majorité des repas rassemble l'ensemble de l'équipage autour d'une des deux tables installées dans les modules Zvezda et Unity. La moindre miette qui s'échappe dans la cabine doit être collectée pour éviter qu'elle ne vienne s'accumuler et obturer les filtres à air ou d'autres équipements délicats[100],[99],[104].

Santé[modifier]

Article principal : Adaptation humaine à l'espace.
Iouri Onufrienko s'exerce sur le tapis roulant installé dans le module Zvezda.

Le mal de l'espace qui est assimilable au mal des transports au niveau des causes (perte d'orientation) comme des symptômes (nausée), affecte certains astronautes mais disparait généralement au bout de quelques jours[105]. Le séjour prolongé de 6 à 7 mois en impesanteur a des conséquences physiologiques bien plus importantes. Les plus graves sont l'atrophie musculaire et la décalcification du squelette due à l'absence de stimulation par le poids corporel des mécanismes de renouvellement de la masse osseuse. On constate également une redistribution des fluides corporels entraînant entre autres une congestion faciale (le sang monte à la tête), un ralentissement du rythme cardiaque, une diminution de la production des globules rouges, un affaiblissement du système immunitaire, une perte de poids, une perturbation du sommeil et des flatulences. Cette deuxième catégorie d'effets disparait toutefois rapidement une fois l'astronaute revenu sur Terre[28].

Pour réduire les conséquences néfastes de l'impesanteur, la station est équipée de deux tapis roulants (TVIS et T2/COLBERT), deux cycloergomètres (CEVIS et VELO) et une machine de musculation (aRED) sur lesquels chaque astronaute doit pratiquer des exercices durant au minimum deux heures par jour[99],[101]. Les astronautes utilisent des tendeurs pour se maintenir en place[106] Ces exercices intensifs ne permettent pas de combattre totalement la perte de densité osseuse et l'atrophie musculaire chiffrées respectivement à 7% et 10% pour les parties les plus touchées, selon une étude récente sur un échantillon de 15 astronautes ayant séjourné environ 6 mois dans la station[107].

L'équipage est exposé à un niveau plus élevé de radiation qu'au sol car l'atmosphère terrestre ne bloque plus les rayons cosmiques. Les astronautes recoivent en moyenne chacun 1 millisievert de radiation par jour, soit la quantité reçue par une personne sur Terre au cours d'une année du fait du rayonnement naturel[108]. Il en résulte une probabilité plus forte que l'astronaute développe un cancer dans le futur (le taux de mortalité par cancer est de 2,48 fois plus élevé chez les astronautes mais l'échantillon est trop faible pour savoir si ce chiffre est représentatif[109]). Un niveau de radiation élevé crée des dommages dans les chromosomes des lymphocytes. Or ces cellules jouent un rôle central dans le système immunitaire et donc tout dommage occasionné à celles-ci réduit l'immunité des astronautes. Au bout d'un certain temps, la faiblesse des défenses immunitaires peut conduire à la propagation d'infections au sein de l'équipage, dont la diffusion est par ailleurs favorisée par le milieu confiné dans lequel ceux-ci vivent. Les radiations favorisent également l'apparition de cataractes. Des boucliers anti-radiations et des médicaments pourraient réduire ces risques à un niveau acceptable, mais les données disponibles sont peu nombreuses. Aujourd'hui tout séjour de longue durée dans la station entraîne un risque croissant[28]. Malgré des protections anti-radiations renforcées par rapport aux stations précédentes comme Mir, le niveau de radiation à l'intérieur de la station spatiale n'a pu être réduit de manière significative, et on pense que de nouvelles avancées technologiques seront nécessaires avant que l'homme puisse effectuer des vols de longue durée dans le système solaire[108].

Les opérations[modifier]

Ravitaillement et mise en orbite des composants de la station spatiale[modifier]

Un cargo russe Progress vient d'arriver chargé de fret.

La construction de la station a mobilisé de 1998 à 2011 de nombreux vaisseaux chargés de placer en orbite les 400 tonnes de la station. La station doit être également régulièrement ravitaillée en consommables (eau, nourriture, gaz, carburant), rechanges (par exemple les batteries dont la durée de vie théorique est de 6,5 ans[110]) et en pièces détachées pour les réparations : ce fret représente un tonnage annuel d'environ 16 tonnes pour un équipage permanent de 6 personnes selon les calculs de la NASA[111]. Par ailleurs certains équipements, représentant un fret plus réduit, doivent être ramenés à Terre pour que la station spatiale puisse fonctionner : résultats des expériences scientifiques, scaphandres à réviser, etc. Enfin, les vaisseaux servent également à évacuer les déchets produits par la station.

Les vaisseaux utilisés[modifier]

La navette spatiale, en service jusque début 2011, est au cœur du dispositif d'assemblage et de ravitaillement de la station spatiale. Les principaux partenaires participent également à ces opérations avec leurs propres vaisseaux. Ceux-ci présentent des capacités très variables en masse, volume et type de cargaison. Les principaux paramètres sont :

  • La charge utile totale en tonnes.
  • Le volume et le tonnage en soute pressurisée pour le fret à destination de l'intérieur la station spatiale.
  • Le volume et le tonnage en soute non pressurisée pour les pièces destinées à l'assemblage à l'extérieur de la station. Le transfert d'objets de l'intérieur de la station vers l'extérieur via les sas aux faibles dimensions est limité aux toutes petites pièces : il est donc nécessaire que les pièces détachées à installer à l'extérieur de la station arrivent dans une soute accessible depuis l'extérieur.
  • La taille de l'écoutille de la soute pressurisée qui conditionne le transport de pièces encombrantes : circulaire de type russe ou APAS d'une superficie de 0,5 m² utilisée sur les cargos ATV et Progress ou de format carré (CBM) propre aux ports la station de 1,61 m² (partie non russe) mise en œuvre par le cargo japonais et la navette spatiale. Seul le port CBM permet de faire passer les équipements internes de la partie non russe de la station.
  • La capacité de transport de liquides (eau), carburant (pour les moteurs-fusées) et de gaz (oxygène, azote, air, etc).
  • La capacité de remorquage qui est utilisée pour rehausser l'orbite de la station et qui dépend de la puissance des moteurs et de la quantité de carburant destinée à la propulsion.


La navette spatiale américaine[modifier]
La navette spatiale amarrée au module Destiny
Article détaillé : Navette spatiale américaine.

La navette spatiale est le plus polyvalent des vaisseaux participant au programme car elle peut transporter tout à la fois du fret pressurisé, du fret non pressurisé dans une soute particulièrement volumineuse, ramener du fret à Terre ou contribuer à la relève des équipages. Elle est de plus équipée d'un bras piloté depuis la cabine de la navette qui lui permet d'extraire les charges utiles qu'elle transporte. Sa capacité de transport, bien que pratiquement divisée par deux par le choix d'une orbite favorable aux lanceurs russes, est particulièrement importante (16,4 tonnes). Enfin sa baie de grande taille (4,6 m par 18,3 m, pour un volume de 300 m3) lui permet de placer en orbite les composants de la station les plus encombrants. La navette s'arrime à la station spatiale via l'un des deux adaptateurs pressurisés (PMA) qui assurent la compatibilité entre le diamètre de l'écoutille de son sas et les ports de la station.

La navette spatiale transporte le fret à destination de l'intérieur de la station grâce à un container pressurisé placé dans sa baie cargo : le Module Logistique Multi-Usages (MPLM) italien, construit sur le modèle du Colombus européen, comporte seize emplacements de racks et dispose d'une écoutille de grande taille au format des ports de la station. Lorsque la navette est parvenue à la station, le container pressurisé est amarré à un port CBM de la station à l'aide du bras Canadarm de la navette.

La navette spatiale peut également transporter le Spacehab, un module pressurisé qui reste dans la soute, et qui peut, entre autres, servir au ravitaillement de l’ISS. Mais il ne fut plus utilisé depuis août 2007 et la mission STS-118[113]

Un cargo Progress sur le point de s'amarrer à la station
Le cargo russe Progress[modifier]

Le cargo russe Progress peut transporter 3,2 tonnes de ravitaillement dont 1,8 tonne de carburant pour la station. Il dispose d'une capacité de remorquage de la station significative. Le cargo s'amarre automatiquement à la station grâce au système Kurs qui utilise des impulsions radar pour calculer les corrections de sa trajectoire et s'amarrer.

Le vaisseau russe Soyouz[modifier]

Le vaisseau russe Soyouz, qui permet de transporter 3 personnes, sert uniquement à relever l'équipage. Après le retrait de la navette spatiale, c'est le seul vaisseau jouant ce rôle jusqu'à ce que le vaisseau spatial américain chargé de remplacer la navette spatiale américaine soit au point (véhicule commercial ou Orion selon le sort du programme Constellation). Deux vaisseaux Soyouz sont amarrés en permanence à la station pour permettre l'évacuation de celle-ci en cas d'urgence. Le Soyouz a une capacité très limitée (quelques dizaines de kg) d'emport de fret aller et retour.

L'ATV européen[modifier]

L'ATV est un vaisseau cargo automatique développé par l'Agence spatiale européenne pour ravitailler la station spatiale. Il est lancé par une Ariane 5 ES ATV et se présente sous la forme d'un cylindre de 4,85 mètres de diamètre sur 10 mètres de longueur. Il peut transporter jusqu'à 7,7 tonnes de fret dont 4 700 kg de carburant pour le remorquage, 860 kg de carburant pompés dans les réservoirs de la station spatiale, 4 500 kg de fret dans une soute pressurisée, 100 kg d'air ou oxygène et 800 kg d'eau. L'ATV dispose de quatre gros moteurs de propulsion qui lui permettent de rehausser à la demande l'altitude de la station durant son temps d'amarrage (6 mois). Il est conçu pour s'amarrer automatiquement au module Zvezda. Son écoutille de modèle russe ne lui permet pas de transporter le fret encombrant. Il n'a pas de capacité de transport de fret non pressurisé. Il est prévu de lancer un ATV tous les quinze mois[114].

Youri Gidzenko décharge de son fret le module MLP Leonardo amené par la navette
L'HTV japonais[modifier]

Le vaisseau cargo japonais HTV, développé par le Japon dans le cadre de sa participation à la station spatiale, peut transporter 4,5 tonnes de fret dans sa soute pressurisée et 1,5 tonne dans un espace non pressurisé. Disposant d'une écoutille de grand diamètre qui permet une connexion directe aux ports de la partie non russe de la station spatiale, il peut, contrairement à l'ATV, transporter les pièces les plus volumineuses qui équipent l'intérieur de la station spatiale internationale (format rack). Pour opérer sa jonction avec la station spatiale le vaisseau cargo HTV, qui a été lancé par le lanceur japonais H-IIB, approche en mode automatique de la station spatiale en utilisant un GPS différentiel puis parvenu à 500 mètres un laser dont le rayon lumineux se réfléchit sur une mire installée sur la station. Arrivé à 10 mètres de la station le bras téléopéré Canadarm aggripe le vaisseau et réalise la jonction[115]. L'HTV a été lancé pour la première fois en septembre 2009. Six autres missions sont aujourd'hui planifiées.

Le vaisseau cargo japonais HTV vient d'être « capturé » par le bras robotique Canadarm2 manipulé depuis l'intérieur de la station spatiale
Les vaisseaux COTS Cygnus et SpaceX Dragon[modifier]

Pour ravitailler la station spatiale après le retrait de la navette spatiale et s'affranchir au maximum des vaisseaux russes, la NASA a lancé le programme COTS qui confie à des acteurs privés le développement et le lancement de vaisseaux-cargos. Deux vaisseaux, de capacité pratiquement identique (2 tonnes), ont été retenus en 2002 et doivent entrer en service vers 2011 :

  • le Cygnus de la société Orbital Sciences : 8 véhicules commandés chargés de transporter 20 tonnes pour un montant de 1,9 milliard $ [116]
  • le Dragon de la société SpaceX  : 12 missions commandés chargés de transporter 20 tonnes pour un montant de 1,6 milliard $[117]. Le vaisseau Dragon est le seul vaisseau qui pourra ramener du fret après le retrait de la navette.

Les opérations de ravitaillement[modifier]

Depuis le début de sa construction en 1998 jusqu'à fin 2011 la station spatiale a été ravitaillée par 35 vaisseaux cargo Progress, 2 ATV européens (2008 et 2011) et 2 HTV japonais (2009 et 2011). La relève des équipages par 20 vaisseaux Soyouz et 31 vols de la navette spatiale américaine a par ailleurs placé en orbite des composants de de la station ou amener du ravitaillement ou des pièces détachées. Deux lanceurs Proton ont lancé des modules russes. Enfin deux Soyouz sont immobilisés en permanence pour permettre à l'équipage d'évacuer la station en cas d'urgence[118]. 2010 est une année un peu particulière car elle est à la fois la première année complète avec un équipage de 6 permanents et la dernière année où les opérations d'assemblage battent leur plein : il est prévu de lancer 5 navettes (celle-ci sera retirée du service à l'issue de ces missions), 4 Soyouz, 1 ATV, 1 HTV et 3 ou 4 Progress.

Les opérations de maintien en orbite[modifier]

Maintien de l'altitude[modifier]

Les changements de l'altitude moyenne de la station entre 1998 et 2009.

La station spatiale est placé sur une orbite basse légèrement elliptique[N 5] avec une inclinaison de 51,6 ° qu'elle parcourt en environ une heure et demie. L'altitude, comprise théoriquement entre 370 km et 460 km (en pratique entre 330 et 410 km de 1998 à 2009), est un compromis entre deux contraintes :

  • À une altitude plus basse l'atmosphère plus dense freine de manière importante la station; une quantité de carburant supplémentaire doit être dépensée pour remonter l'orbite de la station afin d'éviter que celle-ci n'entre dans les couches plus denses de l'atmosphère, ce qui entraînerait sa destruction. À l'altitude retenue, l'altitude de la station diminue de 50 à 100 mètres par jour du fait de la traînée générée par l'atmosphère ténue qui subsiste au niveau de l'orbite. La vitesse d'abaissement de l'orbite dépend en partie de l'orientation des panneaux solaires qui par leur surface peuvent jouer un rôle majeur dans le freinage aérodynamique.
  • Une altitude plus importante implique que les vaisseaux chargés du ravitaillement et de la relève des équipages dépensent du carburant supplémentaire pour rejoindre la station puis, par la suite, effectuer leur rentrée dans l'atmosphère.

Le relèvement de l'altitude peut être réalisé à l'aide des moteurs du module russe Zvezda mais ce sont les différents vaisseaux qui accostent la station, qui effectuent l'essentiel de ce travail: le vaisseau Soyouz et la navette spatiale ont une capacité limitée dans ce domaine contrairement aux cargos Progress, HTV et surtout ATV qui disposent de réserves de carburant importantes dédiées à cette tâche (4,7 tonnes de carburant pour l'ATV). Jusqu'à présent les corrections d'orbite ont été essentiellement effectuées par le cargo Progress. Ces manœuvres consomment environ 7 tonnes de carburant par an. Les trois cargos comportent des réservoirs et des canalisations qui permettent également de refaire le plein des réservoirs de carburant de la station. Il est prévu que soit installé sur la poutre de la station dans les années qui viennent un prototype de moteur Vasimr qui prendra en charge une partie du travail effectué par les cargos tout en consommant beaucoup moins de carburant[119].

Maintien de l'orientation[modifier]

L'orientation de la station spatiale est choisie en fonction de différents critères liés à la production d'énergie, les besoins de manœuvres des vaisseaux et les risques de collision avec des débris.

L'ATV dispose d'une importante capacité à relever l'altitude de la station

Elle doit être régulièrement corrigée car elle est modifiée notamment par le freinage atmosphérique, les irrégularités du champ de gravité terrestre, les déplacements à l'intérieur de la station et la poussée des vaisseaux qui s'amarrent. Les corrections, lorsqu'elles sont faibles, sont généralement prises en charge par quatre gyroscopes à deux degrés de liberté qui fournissent ensemble 4760 Nms[120] et qui sont installés dans le segment S0 de la poutre non loin du centre de gravité de la station. Lorsque la force exercée par les gyroscopes n'est pas suffisante, par exemple lorsque ceux-ci ceux-ci sont saturés ou que l'orientation des panneaux solaires crée une traînée importante, les corrections sont réalisées à l'aide des moteurs du module de service Zarya.

Le plan de l'orbite de la station a une incidence sur le contrôle thermique de la station et la production d'énergie. Le plan de l'orbite est défini par l'angle que fait celui-ci avec la droite joignant le Soleil à la Terre, dit angle bêta (β). Si cet angle est de 90 ° la station est constamment exposée au Soleil et ses panneaux solaires peuvent fonctionner en permanence. En diminuant l'angle bêta, la station séjourne durant une fraction de plus en plus longue de son orbite à l'ombre de la Terre. La contrepartie d'une période d'ensoleillement longue est un échauffement plus important des modules pressurisés. Jusqu'à ce que tous les panneaux solaires soient installés un angle bêta important a été retenu pour permettre la production de suffisamment d'électricité a été retenu. Lorsque l'angle est supérieur à 60 ° la navette spatiale ne peut accoster car son contrôle thermique n'a pas la capacité de faire face au flux thermique généré[121].

L'orientation de la station peut être également modifiée pour maximiser l'énergie électrique produite. La station est conçue pour avancer selon l'axe défini par l'alignement des principaux modules pressurisés (axe X), les laboratoires constituant l'« avant » et les modules russes l'arrière. La poutre (axe Y) qui est perpendiculaire à cet axe est maintenue parallèle au sol. Mais lorsque l'angle bêta est grand cette orientation l'incidence des photons sur les panneaux solaires n'est pas optimale (les rayons solaires ne frappent pas à la verticale les panneaux). Aussi, jusqu'à récemment, l'axe x est généralement basculé de 90 ° pointant perpendiculairement au plan d'orbite dans une configuration dite XPOP (X-axis Perpendicular to the Orbital Plane). Cette orientation peut être maintenue pratiquement sans correction des moteurs d'orientation. Dans la configuration YVV l'axe Y se confond avec l'axe de progression ce qui permet de produire encore plus d'énergie mais requiert beaucoup de carburant pour maintenir l'orientation. Cette configuration n'est utilisée que quelques jours par an[121].

Assemblage et maintenance de la station[modifier]

Sortie extra-véhiculaire pour travailler sur le module japonais Kibo

Les opérations d'assemblage[modifier]

Les opérations d'assemblage de la station sont en grande partie réalisées par les équipages de la navette spatiale qui placent en orbite les nouveaux composants. Le déplacement des modules et des gros composants situés à l'extérieur de la station est réalisé à l'aide des bras Canadarm et Canadarm2 mais l'assemblage est parachevé au cours de chaque mission de la navette par 3 à 5 sorties extravéhiculaires durant lesquelles sont effectués les travaux les plus délicats : interventions sur les liaisons électrique et thermique extérieures, boulonnages des composants, retrait ou mise en place de revêtements de protection et de mains courantes, etc. . Les astronautes de la navette préparent ces sorties au sol durant près d'un an en s'entraînant sur des maquettes à l'échelle 1 immergées dans une piscine ce qui permet de reproduire en partie l'absence de gravité. Les interventions à l'extérieur, qui peuvent durer plus de 7 heures, sont réduites au maximum : elles sont en effet dangereuses, physiquement épuisantes car la combinaison spatiale portée par l'astronaute est rigidifiée par la pression et imposent un long protocole de préparation physique. Sur les 22 sorties extravéhiculaires effectuées en 2009, seules 3 ont été réalisées par l'équipage permanent dont 2 pour préparer l'amarrage d'un nouveau module russe. Les sorties sont effectuées, selon les intervenants et l'objectif, en utilisant le sas de la navette spatiale, celui du module Quest ou le sas russe. Pour des raisons de sécurité les sorties s'effectuent toujours à 2 personnes ce qui correspond à la capacité maximum des sas[122],[123].

Après jonction entre les modules Unity et Quest on raccorde les différentes liaisons et canalisations.

Les modules de la partie non russe de la station sont placés en orbite avec le minimum d'équipements pour limiter leur poids. La mise en place des équipements internes est réalisée par la suite au fur et à mesure de leur arrivée. Ce travail est réalisé essentiellement par l'équipage permanent.

Les opérations de maintenance et d'entretien[modifier]

Les opérations de maintenance occupent une partie importante du temps de l'équipage permanent de la station spatiale. La station contient des composants qui nécessitent d'être remplacés périodiquement - filtres, lampes - ou doivent être entretenus. Des défaillances se produisent régulièrement, un phénomène normal compte tenu du nombre de composants. Certains composants jouant un rôle critique se sont révélés particulièrement fragiles comme le système de support de vie (ECLSS) ou les gyroscopes victimes de deux défaillances bien avant leur fin de vie théorique dont l'une a mise à l'épreuve la résistance mécanique de la poutre de la station[124].

Le rôle du support au sol[modifier]

James F. Reilly s'extrait du sas Quest pour entamer une sortie extravéhiculaire.

La station spatiale internationale ne peut fonctionner sans un support au sol important : il faut entraîner les équipages, planifier les ravitaillements, concevoir, tester et préparer les composants à mettre en orbite, lancer les vaisseaux qui assurent le ravitaillement et la relève des équipages, surveiller les paramètres de fonctionnement de la station, assister l'équipage pour certaines opérations complexes, maintenir le réseau de communications par lesquels transitent données télémétriques et scientifiques, rediriger ces dernières vers les utilisateurs finaux et enfin coordonner tous les acteurs. Ces tâches concernent tous les partenaires et impliquent donc un grand nombre d'organisations spatiales à des degrés divers.

Le centre spatial Johnson de la NASA est responsable du programme tout entier et est le centre de contrôle pour les activités dans la partie non russe de la station spatiale. La conception et le développement des composants de la station et l'entraînement de l'équipage sont également de son ressort. Le centre de vol spatial Marshall de la NASA est le centre de contrôle au sol primaire pour les expériences scientifiques et conçoit la majorité des composants développés aux États-Unis dont le système de support de vie américain ECLSS[125].

Pour le segment russe ces missions sont prises en charge par le centre de contrôle de l'agence spatiale Roscosmos (TSUP) située à Koroliov (contrôle de mission), la Cité des étoiles (entraînement des cosmonautes) et le constructeur GKNPZ Krounitchev (conception de la station)[125].

Les vaisseaux chargés du transport jusqu'à la station sont lancés et suivis par les différents centres nationaux : la navette spatiale américaine et sa charge utile sont préparées et lancées depuis le centre spatial Kennedy. Les vaisseaux russes Progress et Soyouz, ainsi que les modules russes sont tirés depuis la Baïkonour. Le vaisseau cargo japonais est lancé depuis la base de lancement de Tanegashima tandis que les expériences scientifiques japonaises sont suivies par le centre spatial de Tsubuka. Le vaisseau cargo européen ATV est lancé depuis le Kourou et son contrôle est effectué depuis le centre du CNES de Toulouse. Les activités scientifiques du module européen Columbus sont coordonnées par l'agence spatiale allemande (DLR) [125].

Les risques et leur gestion[modifier]

Parties les plus exposées à un risque de collision avec un débris spatial (en rouge)

La survie de la station et de son équipage dépend du bon fonctionnement d'un grand nombre de systèmes complexes et du maintien de l'intégrité de la structure pressurisée. L'équipage est loin de tout secours et est plongé dans un environnement hostile : vide spatial, débris spatiaux, températures extrêmes. La prévention des risques est donc un objectif majeur. Celui-ci est intégré dans la conception de la station, les procédures appliquées au quotidien et l'entraînement de l'équipage. Les principaux risques sont[126] :

  • La perforation de la partie pressurisée de la station par un débris spatial ou une micrométéorite. Cet événement constitue le risque le plus élevé.
  • La collision avec un vaisseau ravitailleur entraînant une dépressurisation (incident survenu dans la station Mir).
  • Une panne complète d'un système critique (support vie, énergie, régulation thermique, informatique, etc).
  • Un incendie, incident qui s'est produit dans la station Mir.
  • Une décompression durant une sortie extra-véhiculaire (perforation de la combinaison spatiale par une micrométéorite, etc).

La menace des débris spatiaux et des micrométéorites[modifier]

La station spatiale est placée sur une orbite où circule également, à des vitesses relatives qui peuvent dépasser 20 km par seconde, une grande variété de débris spatiaux : étages de fusée, satellites hors service, débris d'engins explosés, restes de moteurs à propulsion solide, écailles de peinture, liquide réfrigérant du générateur nucléaire des satellites RORSAT, petites aiguilles et autres objets[127]. Ces débris, ainsi que les micrométéorites[128] constituent une menace pour la station car ils peuvent percer la coque des modules pressurisés ou endommager les autres parties vitales de la station[129],[130]. Les experts américains évaluent le probabilité de pénétration de la partie pressurisée par un débris à 29 % sur une période de 15 ans ; la probabilité d'abandon de la station est de 8 % et celui de la perte de la station, avec éventuellement perte de l'équipage, de 5 %. Ces chiffres partent de l'hypothèse que les protections anti-débris des vaisseaux Progress et Soyouz sont améliorés : si ce n'est pas le cas la probabilité de perforation passe à 46 %. Ces chiffres sont jugés pessimistes par les Russes qui se reposent sur l'expérience accumulée avec la station Mir[131].

Deux vaisseaux Soyouz sont en permanence amarrés à la station pour pouvoir évacuer l'équipage.

La trajectoire des débris de plus de 10 cm est surveillée depuis le sol et l'équipage est averti lorsque l'un d'entre eux est susceptible de passer à proximité de la station. Cela permet à l'équipage de modifier l'orbite de la station (Debris Avoidance Manœuvre DAM) en utilisant les propulseurs des modules russes pour s'écarter de la trajectoire du débris[129]. Si celui-ci est identifié trop tard pour permettre la réalisation d'une manœuvre, l'équipage a pour consigne de fermer toutes les écoutilles à l'intérieur de la station et de s'installer dans les vaisseaux Soyouz qui permettent, si nécessaire, de rejoindre le sol. Cette évacuation partielle a déjà eu lieu à deux reprises le 13 mars 2009 et le 28 Juin 2011 [132]. Les débris d'une taille inférieure à 10 cm, trop nombreux et trop petits, ne peuvent être surveillés depuis le sol. L'équipage s'entraîne donc régulièrement à faire face à une dépressurisation : la station est équipée de détecteurs de perte de pression qui permettent de calculer à quel moment l'atmosphère deviendra irrespirable. L'équipage peut ralentir les pertes en coupant le système de ventilation et tenter de détecter et obturer la fuite. Si la brèche dans la coque a une superficie de quelques cm², l'équipage dispose théoriquement d'un délai de plusieurs heures avant que la situation devienne intenable[133]. Si la réparation se révèle impossible, l'équipage doit se replier vers les modules intacts en fermant les écoutilles internes ou évacuer la station à bord des vaisseaux Soyouz. Depuis le passage à 6 occupants permanents en mai 2009, deux vaisseaux Soyouz triplaces sont amarrés en permanence aux modules russes en prévision d'un événement de ce type[134].

Les débris constituent également une menace durant les sorties extravéhiculaires des astronautes , car ils peuvent perforer les combinaisons spatiales et entraîner une dépressurisation mortelle (l'astronaute dispose d'environ 15 secondes pour réagir avant de perdre conscience)[135],[136].

Mark Lee teste le système SAFER au cours de la mission STS-64

La probabilité d'une perforation de la tenue spatiale est toutefois, selon les experts américains, très faible compte tenu de la distribution des débris et des protections incorporées dans les combinaisons spatiales : 6 % après 2 700 heures d'activités extravéhiculaires d'une équipe de deux personnes[137]. L'astronaute peut également perforer sa combinaison en y faisant un accroc (survenu une fois mais sans conséquence) ou partir à la dérive. Pour combattre ce dernier risque, les procédures concernant l'accrochage sont très strictes et en ultime recours l'astronaute emporte un dispositif propulsif, le SAFER, fournissant un delta-v cumulé de 3 m/s[N 6].

Les autres risques[modifier]

De nombreux capteurs permettent aux contrôleurs au sol, qui assurent une surveillance permanente ainsi qu'aux systèmes de contrôle automatique de la station de détecter des changements pouvant affecter de manière grave le fonctionnement de la station : modification de la composition de l'atmosphère (augmentation du taux de CO2, présence de gaz toxiques), début d'incendie... L'équipage est averti et des contre-mesures sont mises en œuvre éventuellement automatiquement[138]. Les fonctions critiques de la station doivent être normalement assurées même en cas de double défaillance, contrainte prise en compte par la présence de redondances : il y ainsi deux systèmes permettant de renouveler l'oxygène auxquels s'ajoute un système de secours basé sur des bouteilles d'oxygène et des cartouches chimiques. Les systèmes les plus vulnérables sont le circuit de régulation thermique et l'alimentation électrique du fait de la présence de composants critiques uniques. La station peut néanmoins continuer à fonctionner en cas de panne de ces systèmes mais en mode dégradé. Pour pouvoir remettre en marche les systèmes défaillants l'équipage dispose à l'intérieur et à l'extérieur de la station d'un certain nombre de pièces de rechange pré-positionnées (en particulier pour les composants critiques), de kits de réparation et de boites à outils[139]. Les vols de la navette spatiale en 2010 sont en partie utilisés pour constituer un stock de pièces de rechange important car leur transport deviendra plus difficile après le retrait de la navette à la fin de cette année.

Les modalités de la coopération internationale[modifier]

Le programme de la station internationale est un programme développé en coopération par plusieurs pays. Sa construction et sa gestion sont régis par des accords de coopération internationaux établis à trois niveaux[140] :

L'équipage de l'expédition 21 et celui de la mission STS-127 reflètent le caractère international de la station : on y compte deux Canadiens, deux Russes, un Japonais et un Belge.
  • L'Accord intergouvernemental de la station spatiale internationale (IGA en anglais International Space Station Intergovernmental Agreement) signé le 29 janvier 1998 par les 15 pays impliqués dans le projet : les États-Unis, le Canada, le Japon, la Russie, et les 10 membres de l'Agence spatiale européenne (Belgique, Danemark, France, Allemagne, Italie, Pays-Bas, Norvège, Espagne, Suède et Suisse). Il fixe le cadre juridique dans lequel la station est construite et utilisée.
  • Quatre Memoranda of Understandings (MoU) signés entre la NASA et les agences européenne ESA, russe Roscosmos, canadienne CSA et japonaise JAXA). Ils décrivent de manière détaillée les rôles et responsabilités des agences dans la construction et l'utilisation de la station. C'est dans le cadre de cet accord qu'est définie l'organisation permettant l'utilisation de la station.
  • Différents accords bilatéraux entre les agences spatiales ont été rédigés pour implémenter les MoU. Ces accords se traduisent par des règles et des tâches à réaliser.

Les droits d'utilisation de la station spatiale par chaque pays ou entités sont déterminés par l'investissement effectué. Toutefois la partie russe de la station est uniquement utilisée par la Russie qui, par ailleurs, fournit 2 à 3 des membres de l'équipage permanent de 6 personnes. Au sein de la partie non russe de la station, chaque partenaire détient le droit d'utilisation de la charge utile (laboratoire, expériences) qu'il a fourni. Les pays qui ont fourni des éléments de support comme le Canada (bras Canadarm2) reçoivent en échange des droits d'utilisation de certains éléments. Chaque utilisateur peut céder une partie de ses droits à un autre participant ou à une agence non impliquée dans la construction de la station. L'objectif de ces règles est que les biens et les services puissent être échangés grâce à des opérations de troc sans mouvements de fonds. C'est ainsi que l'Agence spatiale européenne a construit les modules Harmony et Tranquility en échange de la mise en orbite du module Columbus par la navette spatiale américaine. Les taux d'échange sont fixés par les parties au cas par cas dans le respect du cadre fixé par les accords généraux[140],[141].

L'agence spatiale européenne détient 8,3% des droits d'utilisation de la station (partie non russe), ce qui lui permet d'envoyer un astronaute environ 3 à 4 mois par an avec un équipage permanent de 6 personnes. Dans le cadre d'un accord de troc avec la NASA, elle a cédé 51% des droits d'utilisation de son laboratoire Columbus en échange des services de transport de la navette spatiale. La NASA dispose de 76,6% des droits d'utilisation, l'agence japonaise de 12,8% et l'agence canadienne de 2,3%[83],[142],[140].



14/08/2011
0 Poster un commentaire

A découvrir aussi


Inscrivez-vous au blog

Soyez prévenu par email des prochaines mises à jour

Rejoignez les 503 autres membres